Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1645-1665.

In this work, we derive a reliable and efficient residual-typed error estimator for the finite element approximation of a 2D cathodic protection problem governed by a steady-state diffusion equation with a nonlinear boundary condition. We propose a standard adaptive finite element method involving the Dörfler marking and a minimal refinement without the interior node property. Furthermore, we establish the contraction property of this adaptive algorithm in terms of the sum of the energy error and the scaled estimator. This essentially allows for a quasi-optimal convergence rate in terms of the number of elements over the underlying triangulation. Numerical experiments are provided to confirm this quasi-optimality.

DOI : 10.1051/m2an/2019031
Classification : 65N12, 65N15, 65N30, 65N50, 35J65
Mots-clés : Cathodic protection, nonlinear boundary condition, a posteriori error estimator, adaptive finite element method, quasi-optimality
Li, Guanglian 1 ; Xu, Yifeng 1

1
@article{M2AN_2019__53_5_1645_0,
     author = {Li, Guanglian and Xu, Yifeng},
     title = {Quasi-optimality of an {Adaptive} {Finite} {Element} {Method} for {Cathodic} {Protection}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1645--1665},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019031},
     zbl = {1427.65338},
     mrnumber = {3991490},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019031/}
}
TY  - JOUR
AU  - Li, Guanglian
AU  - Xu, Yifeng
TI  - Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1645
EP  - 1665
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019031/
DO  - 10.1051/m2an/2019031
LA  - en
ID  - M2AN_2019__53_5_1645_0
ER  - 
%0 Journal Article
%A Li, Guanglian
%A Xu, Yifeng
%T Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1645-1665
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019031/
%R 10.1051/m2an/2019031
%G en
%F M2AN_2019__53_5_1645_0
Li, Guanglian; Xu, Yifeng. Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1645-1665. doi : 10.1051/m2an/2019031. http://www.numdam.org/articles/10.1051/m2an/2019031/

[1] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000). | DOI | MR | Zbl

[2] I. Babuška and W. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | DOI | MR | Zbl

[3] L. Belenki, L. Diening and C. Kreuzer, Optimality of an adaptive finite element method for the p -Laplacian equation. IMA J. Numer. Anal. 32 (2012) 484–510. | DOI | MR | Zbl

[4] P. Binev, W. Dahmen and R. Devore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl

[5] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edition. Springer, New York, NY 15 (2008). | MR | Zbl

[6] C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity. Comp. Math. Appl. 67 (2014) 1195–1253. | MR | Zbl

[7] J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | Zbl

[8] P.G. Ciarlet, Finite element methods for elliptic problems. Siam, North-Holland, Amsterdam (1978). | Zbl

[9] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p -Laplacian equation. SIAM J. Numer. Anal. 46 (2008) 614–638. | DOI | MR | Zbl

[10] L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16 (2016) 33–68. | MR | Zbl

[11] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl

[12] M. Feischl, T. Führer and D. Praetorius, Adaptive FEM with optimal convergence rates for a certain class of non-symmetric and possibly non-linear problems. SIAM J. Numer. Anal. 52 (2014) 601–625. | DOI | MR | Zbl

[13] S.A. Funken, D. Praetorius and P. Wissgott, Efficient implementation of adaptive #-FEM in Matlab. Comput. Methods Appl. Math. 11 (2011) 460–490. | MR | Zbl

[14] E.M. Garau, P. Morin and C. Zuppa, Convergence of an adaptive Kačanov FEM for quasi-linear problems. Appl. Num. Math. 61 (2011) 512–529. | DOI | MR | Zbl

[15] E.M. Garau, P. Morin and C. Zuppa, Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type. Numer. Math. Theory Methods App. 5 (2012) 131–156. | DOI | MR | Zbl

[16] L.S. Hou and W. Sun, Optimal positioning of anodes for cathodic protection. SIAM Control Optim. 34 (1996) 855–873. | DOI | MR | Zbl

[17] L.S. Hou and J.C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71 (1995) 289–315. | MR | Zbl

[18] M. Karkulik, D. Pavlicek and D. Praetorius, On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection. Constr. Approx. 38 (2013) 213–234. | DOI | MR | Zbl

[19] I. Kossaczky, A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55 (1995) 275–288. | DOI | MR | Zbl

[20] G. Li and Y. Xu, A convergent adaptive finite element method for cathodic protection. Comput. Methods Appl. Math. 17 (2017) 105–120. | DOI | MR | Zbl

[21] W.F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15 (1989) 326–347. | MR | Zbl

[22] R.H. Nochetto, K.G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, edited by R.A. Devore and A. Kunoth. Springer, New York, NY (2009) 409–542. | DOI | MR | Zbl

[23] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl

[24] R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. | MR | Zbl

[25] R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | DOI | MR | Zbl

[26] C. Traxler, An algorithm for adaptive mesh refinement in n dimensions. Computing 59 (1997) 115–137. | DOI | MR | Zbl

[27] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). | DOI | MR | Zbl

Cité par Sources :