In this work, we derive a reliable and efficient residual-typed error estimator for the finite element approximation of a 2D cathodic protection problem governed by a steady-state diffusion equation with a nonlinear boundary condition. We propose a standard adaptive finite element method involving the Dörfler marking and a minimal refinement without the interior node property. Furthermore, we establish the contraction property of this adaptive algorithm in terms of the sum of the energy error and the scaled estimator. This essentially allows for a quasi-optimal convergence rate in terms of the number of elements over the underlying triangulation. Numerical experiments are provided to confirm this quasi-optimality.
Mots-clés : Cathodic protection, nonlinear boundary condition, a posteriori error estimator, adaptive finite element method, quasi-optimality
@article{M2AN_2019__53_5_1645_0, author = {Li, Guanglian and Xu, Yifeng}, title = {Quasi-optimality of an {Adaptive} {Finite} {Element} {Method} for {Cathodic} {Protection}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1645--1665}, publisher = {EDP-Sciences}, volume = {53}, number = {5}, year = {2019}, doi = {10.1051/m2an/2019031}, zbl = {1427.65338}, mrnumber = {3991490}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019031/} }
TY - JOUR AU - Li, Guanglian AU - Xu, Yifeng TI - Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 1645 EP - 1665 VL - 53 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019031/ DO - 10.1051/m2an/2019031 LA - en ID - M2AN_2019__53_5_1645_0 ER -
%0 Journal Article %A Li, Guanglian %A Xu, Yifeng %T Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 1645-1665 %V 53 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019031/ %R 10.1051/m2an/2019031 %G en %F M2AN_2019__53_5_1645_0
Li, Guanglian; Xu, Yifeng. Quasi-optimality of an Adaptive Finite Element Method for Cathodic Protection. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1645-1665. doi : 10.1051/m2an/2019031. http://www.numdam.org/articles/10.1051/m2an/2019031/
[1] A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000). | DOI | MR | Zbl
and ,[2] Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | DOI | MR | Zbl
and ,[3] Optimality of an adaptive finite element method for the -Laplacian equation. IMA J. Numer. Anal. 32 (2012) 484–510. | DOI | MR | Zbl
, and ,[4] Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl
, and ,[5] The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 3rd edition. Springer, New York, NY 15 (2008). | MR | Zbl
and ,[6] Axioms of adaptivity. Comp. Math. Appl. 67 (2014) 1195–1253. | MR | Zbl
, , and ,[7] Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | Zbl
, , and ,[8] Finite element methods for elliptic problems. Siam, North-Holland, Amsterdam (1978). | Zbl
,[9] Linear convergence of an adaptive finite element method for the -Laplacian equation. SIAM J. Numer. Anal. 46 (2008) 614–638. | DOI | MR | Zbl
and ,[10] Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16 (2016) 33–68. | MR | Zbl
, and ,[11] A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl
,[12] Adaptive FEM with optimal convergence rates for a certain class of non-symmetric and possibly non-linear problems. SIAM J. Numer. Anal. 52 (2014) 601–625. | DOI | MR | Zbl
, and ,[13] Efficient implementation of adaptive #-FEM in Matlab. Comput. Methods Appl. Math. 11 (2011) 460–490. | MR | Zbl
, and ,[14] Convergence of an adaptive Kačanov FEM for quasi-linear problems. Appl. Num. Math. 61 (2011) 512–529. | DOI | MR | Zbl
, and ,[15] Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type. Numer. Math. Theory Methods App. 5 (2012) 131–156. | DOI | MR | Zbl
, and ,[16] Optimal positioning of anodes for cathodic protection. SIAM Control Optim. 34 (1996) 855–873. | DOI | MR | Zbl
and ,[17] Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls. Numer. Math. 71 (1995) 289–315. | MR | Zbl
and ,[18] On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection. Constr. Approx. 38 (2013) 213–234. | DOI | MR | Zbl
, and ,[19] A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55 (1995) 275–288. | DOI | MR | Zbl
,[20] A convergent adaptive finite element method for cathodic protection. Comput. Methods Appl. Math. 17 (2017) 105–120. | DOI | MR | Zbl
and ,[21] A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15 (1989) 326–347. | MR | Zbl
,[22] Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, edited by and . Springer, New York, NY (2009) 409–542. | DOI | MR | Zbl
, and ,[23] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,[24] Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. | MR | Zbl
,[25] The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | DOI | MR | Zbl
,[26] An algorithm for adaptive mesh refinement in dimensions. Computing 59 (1997) 115–137. | DOI | MR | Zbl
,[27] A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). | DOI | MR | Zbl
,Cité par Sources :