Error analysis of PML-FEM approximations for the Helmholtz equation in waveguides
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1191-1222.

In this paper, we study finite element approximate solutions to the Helmholtz equation in waveguides by using a perfectly matched layer (PML). The PML is defined in terms of a piecewise linear coordinate stretching function with two parameters for absorbing propagating and evanescent components respectively, and truncated with a Neumann condition on an artificial boundary rather than a Dirichlet condition for cutoff modes that waveguides may allow. In the finite element analysis for the PML problem, we have to deal with two difficulties arising from the lack of full regularity of PML solutions and the anisotropic nature of the PML problem with, in particular, large PML damping parameters. Anisotropic finite element meshes in the PML regions depending on the damping parameters are used to handle anisotropy of the PML problem. As a main goal, we establish quasi-optimal a priori error estimates, that does not depend on anisotropy of the PML problem (when no cutoff mode is involved), including the exponentially convergent PML error with respect to the width and the strength of PML. The numerical experiments that confirm the convergence analysis will be presented.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019026
Classification : 65N12, 65M15, 65M30
Mots-clés : Helmholtz equation, PML, finite element method, waveguide
Kim, Seungil 1

1
@article{M2AN_2019__53_4_1191_0,
     author = {Kim, Seungil},
     title = {Error analysis of {PML-FEM} approximations for the {Helmholtz} equation in waveguides},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1191--1222},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019026},
     zbl = {1455.78014},
     mrnumber = {3978473},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019026/}
}
TY  - JOUR
AU  - Kim, Seungil
TI  - Error analysis of PML-FEM approximations for the Helmholtz equation in waveguides
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1191
EP  - 1222
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019026/
DO  - 10.1051/m2an/2019026
LA  - en
ID  - M2AN_2019__53_4_1191_0
ER  - 
%0 Journal Article
%A Kim, Seungil
%T Error analysis of PML-FEM approximations for the Helmholtz equation in waveguides
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1191-1222
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019026/
%R 10.1051/m2an/2019026
%G en
%F M2AN_2019__53_4_1191_0
Kim, Seungil. Error analysis of PML-FEM approximations for the Helmholtz equation in waveguides. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1191-1222. doi : 10.1051/m2an/2019026. http://www.numdam.org/articles/10.1051/m2an/2019026/

I. Babǔska, The finite element method for elliptic equations with discontinuous coefficients. Computing 5 (1970) 207–213. | DOI | MR | Zbl

W. Bangerth, R. Hartmann and G. Kanschat, Deal.II – a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24. | DOI | MR | Zbl

E. Bécache, A.-S. Bonnet-Ben Dhia and G. Legendre, Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42 (2004) 409–433. | DOI | MR | Zbl

A. Bendali and P. Guillaume, Non-reflecting boundary conditions for waveguides. Math. Comput. 68 (1999) 123–144. | DOI | MR | Zbl

C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. | DOI | MR | Zbl

A. Bonito, J.-G. Guermond and F. Luddens, Regularity of the maxwell equations in heterogeneous media and lipschitz domains. J. Math. Anal. Appl. 408 (2013) 498–512. | DOI | MR | Zbl

J.H. Bramble and J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. | DOI | MR | Zbl

J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in 2 and 3 . J. Comput. Appl. Math. 247 (2013) 209–230. | DOI | MR | Zbl

Z. Chen and X. Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer. Math. Theory Methods Appl. 1 (2008) 113–137. | MR | Zbl

Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media. SIAM J. Numer. Anal. 48 (2010) 2158–2185. | DOI | MR | Zbl

Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. | DOI | MR | Zbl

M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Vol. 1341, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). | MR | Zbl

E.B. Davies and L. Parnovski, Trapped modes in acoustic waveguides. Quart. J. Mech. Appl. Math. 51 (1998) 477–492. | DOI | MR | Zbl

V. Druskin, S. Güttel and L. Knizhnerman, Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Rev. 58 (2016) 90–116. | DOI | MR | Zbl

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | DOI | MR | Zbl

D.V. Evans, M. Levitin and D. Vassiliev, Existence theorems for trapped modes. J. Fluid Mech. 261 (1994) 21–31. | DOI | MR | Zbl

C.I. Goldstein, Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I. Trans. Am. Math. Soc. 135 (1969) 1–31. | DOI | MR | Zbl

C.I. Goldstein, A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput. 39 (1982) 309–324. | DOI | MR | Zbl

T. Hagstrom and S. Kim, Complete radiation boundary conditions for the Helmholtz equation I: waveguides. Numer. Math. 141 (2019) 917–966. | DOI | MR | Zbl

I. Harari, I. Patlashenko and D. Givoli, Dirichlet-to-Neumann maps for unbounded wave guides. J. Comput. Phys. 143 (1998) 200–223. | DOI | MR | Zbl

F. Jochmann, An hs-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238 (1999) 429–450. | DOI | MR | Zbl

R.B. Kellogg, On the Poisson equation with intersecting interfaces. Appl. Anal. 4 (1974/75) 101–129. | DOI | MR | Zbl

S. Kim, Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with complete radiation boundary conditions. J. Math. Anal. Appl. 410 (2014) 275–291. | DOI | MR | Zbl

S. Kim, Cartesian PML approximation to resonances in open systems in 2 . Appl. Numer. Math. 81 (2014) 50–75. | DOI | MR | Zbl

S. Kim, An equivalent norm in fractional Sobolev spaces for the Neumann Laplacian and the vector Laplacian. Manuscript (2019).

S. Kim and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in 2 . J. Math. Anal. Appl. 370 (2010) 168–186. | DOI | MR | Zbl

S. Kim and J.E. Pasciak, Analysis of the spectrum of a Cartesian perfectly matched layer (PML) approximation to acoustic scattering problems. J. Math. Anal. Appl. 361 (2010) 420–430. | DOI | MR | Zbl

S. Kim and H. Zhang, Optimized Schwarz method with complete radiation transmission conditions for the Helmholtz equation in waveguides. SIAM J. Numer. Anal. 53 (2015) 1537–1558. | DOI | MR | Zbl

S. Kim and H. Zhang, Optimized double sweep Schwarz method with complete radiation boundary conditions for the Helmholtz equation in waveguides. Comput. Math. Appl. 72 (2016) 1573–1589. | MR | Zbl

S. Nicaise, Singularities in interface problems. In: Problems and Methods in Mathematical Physics (Chemnitz, 1993). Vol. 134 of Teubner-Texte Math. Teubner, Stuttgart (1994) 130–137. | DOI | MR | Zbl

A.H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | DOI | MR | Zbl

Cité par Sources :