Numerical approximation of stochastic time-fractional diffusion
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1245-1268.

We develop and analyze a numerical method for stochastic time-fractional diffusion driven by additive fractionally integrated Gaussian noise. The model involves two nonlocal terms in time, i.e., a Caputo fractional derivative of order α ∈ (0,1), and fractionally integrated Gaussian noise (with a Riemann-Liouville fractional integral of order γ ∈ [0,1] in the front). The numerical scheme approximates the model in space by the standard Galerkin method with continuous piecewise linear finite elements and in time by the classical Grünwald-Letnikov method (for both Caputo fractional derivative and Riemann-Liouville fractional integral), and the noise by the L2-projection. Sharp strong and weak convergence rates are established, using suitable nonsmooth data error estimates for the discrete solution operators for the deterministic inhomogeneous problem. One- and two-dimensional numerical results are presented to support the theoretical findings.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019025
Classification : 60H15, 60H35, 65M12
Mots-clés : stochastic time-fractional diffusion, Galerkin finite element method, Grünwald-Letnikov method, strong convergence, weak convergence
Jin, Bangti 1 ; Yan, Yubin 1 ; Zhou, Zhi 1

1
@article{M2AN_2019__53_4_1245_0,
     author = {Jin, Bangti and Yan, Yubin and Zhou, Zhi},
     title = {Numerical approximation of stochastic time-fractional diffusion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1245--1268},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019025},
     mrnumber = {3978476},
     zbl = {1447.60126},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019025/}
}
TY  - JOUR
AU  - Jin, Bangti
AU  - Yan, Yubin
AU  - Zhou, Zhi
TI  - Numerical approximation of stochastic time-fractional diffusion
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1245
EP  - 1268
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019025/
DO  - 10.1051/m2an/2019025
LA  - en
ID  - M2AN_2019__53_4_1245_0
ER  - 
%0 Journal Article
%A Jin, Bangti
%A Yan, Yubin
%A Zhou, Zhi
%T Numerical approximation of stochastic time-fractional diffusion
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1245-1268
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019025/
%R 10.1051/m2an/2019025
%G en
%F M2AN_2019__53_4_1245_0
Jin, Bangti; Yan, Yubin; Zhou, Zhi. Numerical approximation of stochastic time-fractional diffusion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1245-1268. doi : 10.1051/m2an/2019025. http://www.numdam.org/articles/10.1051/m2an/2019025/

E.J. Allen, S.J. Novosel and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations. Stoch. Stoch. Rep. 64 (1998) 117–142. | DOI | MR | Zbl

A. Andersson, M. Kovács and S. Larsson, Weak error analysis for semilinear stochastic Volterra equations with additive noise. J. Math. Anal. Appl. 437 (2016) 1283–1304. | DOI | MR | Zbl

A. Andersson, R. Kruse and S. Larsson, Duality in refined Sobolev-Malliavin spaces and weak approximation of SPDE. Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016) 113–149. | MR | Zbl

A. Andersson and S. Larsson, Weak convergence for a spatial approximation of the nonlinear stochastic heat equation. Math. Comp. 85 (2016) 1335–1358. | DOI | MR | Zbl

V.V. Anh, N.N. Leonenko and M. Ruiz-Medina, Space-time fractional stochastic equations on regular bounded open domains. Fract. Calc. Appl. Anal. 19 (2016) 1161–1199. | DOI | MR | Zbl

W. Arendt, C.J. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems. 2nd edition. Birkhäuser, Basel (2011) | MR | Zbl

D. Baffet and J.S. Hesthaven, A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55 (2017) 496–520. | DOI | MR | Zbl

E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131 (2015) 1–31. | DOI | MR | Zbl

C.-E. Bréhier, M. Hairer and A.M. Stuart, Weak error estimates for trajectories of SPDEs under spectral Galerkin discretization. J. Comput. Math. 36 (2018) 159–182. | DOI | MR | Zbl

L. Chen, Nonlinear stochastic time-fractional diffusion equations on R: moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 369 (2017) 8497–8535. | DOI | MR | Zbl

L. Chen, Y. Hu and D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on d . Preprint arXiv:1509.07763 (2015). | MR | Zbl

Z.-Q. Chen, K.-H. Kim and P. Kim, Fractional time stochastic partial differential equations. Stochastic Process. Appl. 125 (2015) 1470–1499. | DOI | MR | Zbl

E. Cuesta, C. Lubich and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75 (2006) 673–696. | DOI | MR | Zbl

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, 2nd edition. Cambridge University Press, Cambridge (2014). | MR | Zbl

A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation. Math. Comp. 78 (2009) 845–863. | DOI | MR | Zbl

Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40 (2002) 1421–1445. | DOI | MR | Zbl

M. Foondun, Remarks on a fractional-time stochastic equation. Preprint arXiv:1811.05391 (2018). | MR

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002) 1397–1465. | DOI | MR | Zbl

H. Fujita and T. Suzuki, Evolution problems. In: Handbook of Numerical Analysis. Vol. II. NorthHolland, Amsterdam (1991) 789–928. | MR | Zbl

M.B. Giles, Multilevel Monte Carlo methods. Acta Numer. 24 (2015) 259–328. | DOI | MR | Zbl

M. Gunzburger, B. Li and J. Wang, Convergence of finite element solution of stochastic partial integral-differential equations driven by white noise. Preprint arXiv:1711.01998 (2017). | MR

A. Jentzen and P.E. Kloeden, The numerical approximation of stochastic partial differential equations. Milan J. Math. 77 (2009) 205–244. | DOI | MR | Zbl

B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (2013) 445–466. | DOI | MR | Zbl

B. Jin, R. Lazarov and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) A146–A170. | DOI | MR | Zbl

B. Jin, R. Lazarov and Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview. Comput. Methods Appl. Mech. Eng. 346 (2019) 332–358. | DOI | MR | Zbl

B. Jin, B. Li and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (2017) A3129–A3152. | DOI | MR | Zbl

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006). | MR | Zbl

M. Kovács and J. Printems, Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type evolution equation. Math. Comp. 83 (2014) 2325–2346. | DOI | MR | Zbl

M. Kovács and J. Printems, Weak convergence of a fully discrete approximation of a linear stochastic evolution equation with a positive-type memory term. J. Math. Anal. Appl. 413 (2014) 939–952. | DOI | MR | Zbl

R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, In Vol. 2093, Lecture Notes in Mathematics. Springer, Heidelberg (2014). | DOI | MR | Zbl

X. Li and X. Yang, Error estimates of finite element methods for stochastic fractional differential equations. J. Comput. Math. 35 (2017) 346–362. | DOI | MR | Zbl

W. Liu, M. Röckner and J.L. Da Silva, Quasi-linear (stochastic) partial differential equations with time-fractional derivatives. SIAM J. Math. Anal. 50 (2018) 2588–2607. | DOI | MR | Zbl

S.V. Lototsky and B.L. Rozovsky, Classical and generalized solutions of fractional stochastic differential equations. Preprint. arXiv:1810.12951 (2018) . | MR

C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. | DOI | MR | Zbl

C. Lubich, I.H. Sloan and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65 (1996) 1–17. | DOI | MR | Zbl

W. Mclean and K. Mustapha, Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293 (2015) 201–217. | DOI | MR | Zbl

R. Metzler, J.H. Jeon, A.G. Cherstvy and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014) 24128–24164. | DOI

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. 2nd edition. Springer-Verlag, Berlin (2006). | MR | Zbl

Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363–1384. | DOI | MR | Zbl

Cité par Sources :