Damage-driven fracture with low-order potentials: asymptotic behavior, existence and applications
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1305-1350.

We study the Γ-convergence of damage to fracture energy functionals in the presence of low-order nonlinear potentials that allows us to model physical phenomena such as fluid-driven fracturing, plastic slip, and the satisfaction of kinematical constraints such as crack non-interpenetration. Existence results are also addressed.

DOI : 10.1051/m2an/2019024
Classification : 49J45, 26B30, 74R10, 35A35
Mots-clés : special function of bounded deformation, fracture, free discontinuity problem, Γ-convergence, phase-field approximation, geometric measure theory
Caroccia, Marco 1 ; Van Goethem, Nicolas 1

1
@article{M2AN_2019__53_4_1305_0,
     author = {Caroccia, Marco and Van Goethem, Nicolas},
     title = {Damage-driven fracture with low-order potentials: asymptotic behavior, existence and applications},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1305--1350},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019024},
     zbl = {1430.49006},
     mrnumber = {3978474},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019024/}
}
TY  - JOUR
AU  - Caroccia, Marco
AU  - Van Goethem, Nicolas
TI  - Damage-driven fracture with low-order potentials: asymptotic behavior, existence and applications
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1305
EP  - 1350
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019024/
DO  - 10.1051/m2an/2019024
LA  - en
ID  - M2AN_2019__53_4_1305_0
ER  - 
%0 Journal Article
%A Caroccia, Marco
%A Van Goethem, Nicolas
%T Damage-driven fracture with low-order potentials: asymptotic behavior, existence and applications
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1305-1350
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019024/
%R 10.1051/m2an/2019024
%G en
%F M2AN_2019__53_4_1305_0
Caroccia, Marco; Van Goethem, Nicolas. Damage-driven fracture with low-order potentials: asymptotic behavior, existence and applications. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1305-1350. doi : 10.1051/m2an/2019024. http://www.numdam.org/articles/10.1051/m2an/2019024/

G. Allaire, F. Jouve and N. Van Goethem, Damage and fracture evolution in brittle materials by shape optimization methods. J. Comput. Phys. 33 (2011) 5010–5044. | DOI | MR | Zbl

L. Ambrosio, Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime. Edizioni Scuola Normale Superiore di Pisa, Pisa (1997). | MR | Zbl

L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201–238. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, NY (2000). | MR | Zbl

L. Ambrosio, A. Lemenant and G. Royer-Carfagni, A variational model for plastic slip and its regularization via Γ-convergence. J. Elast. 110 (2013) 201–235. | DOI | MR | Zbl

S. Amstutz and N. Van Goethem, Topology optimization methods with gradient-free perimeter approximation. Interfaces Free Bound. 14 (2012) 401–430. | DOI | MR | Zbl

G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. | DOI | MR | Zbl

B. Bourdin, G.A. Francfort and J.J. Marigo, The variational approach to fracture. J. Elast. 91 (2008) 5–148. | DOI | MR | Zbl

G. Buttazzo, Semicontinuity, relaxation, and integral representation in the calculus of variations. Longman Scientific and Technical 207 (1989). | MR | Zbl

G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals. Nonlin. Anal.: Theory Methods Appl. 9 (1985) 515–532. | DOI | MR | Zbl

A. Chambolle, Addendum to “an approximation result for special functions with bounded deformation” [J. Math. Pures Appl. (9) 83 (7) (2004) 929–954]: the n-dimensional case. J. Math. Pures Appl. 84 (2005) 137–145. | DOI | MR | Zbl

A. Chambolle, An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2005) 929–954. | DOI | MR | Zbl

A. Chambolle and V. Crismale, A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. | DOI | MR | Zbl

A. Chambolle and V. Crismale, Compactness and lower semicontinuity in GSBD. To appear J. Eur. Math. Soc. (JEMS) (2019). | MR | Zbl

A. Chambolle, S. Conti and G. Francfort, Korn-poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65 (2016) 1373–1399. | DOI | MR | Zbl

A. Chambolle, S. Conti and F. Iurlano, Approximation of functions with small jump sets and existence of strong minimizers of griffith’s energy. J. Math. Pures Appl (2019). | MR | Zbl

S. Conti, M. Focardi and F. Iurlano, Existence of strong minimizers for the griffith static fracture model in dimension two. Ann. Inst. Henri Poincaré C 36 (2019) 455–474. | DOI | MR | Zbl

G. Cortesani, Strong approximation of GSBD functions by piecewise smooth functions. Annali dell’Università di Ferrara 43 (1997) 27–49. | DOI | MR | Zbl

G. Cortesani and R. Toader, A density result in sbv with respect to non-isotropic energies. Nonlin. Anal. Theory Methods App. 38 (1999) 585–604. | DOI | MR | Zbl

V. Crismale, On the approximation of SBDp functions and some applications. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2019).

G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. | DOI | MR | Zbl

G. Dal Maso and F. Iurlano, Fracture models as Γ-limits of damage models. Commun. Pure Appl. Anal. 12 (2013) 1657–1686. | DOI | MR | Zbl

F. Ebobisse, Fine properties of functions with bounded deformation and applications in variational problems. Ph.D. thesis, University of Pisa (1999).

M. Focardi, Variational approximation of vectorial free discontinuity problems: the discrete and continuous case. Ph.D. thesis, Scuola Normale Superiore di Pisa (2002).

M. Focardi and F. Iurlano, Asymptotic analysis of ambrosio–tortorelli energies in linearized elasticity. SIAM J. Math. Anal. 46 (2014) 2936–2955. | DOI | MR | Zbl

I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. | DOI | MR | Zbl

G.A. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium. Eur. J. Mech. A 12 (1993) 149–189. | MR | Zbl

G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | DOI | MR | Zbl

M. Friedrich and F. Solombrino, Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 35 (2018) 27–64. | DOI | Numdam | MR | Zbl

F. Iurlano, Fracture and plastic models as Γ -limits of damage models under different regimes. Adv. Cal. Var. 6 (2013) 165–189. | MR | Zbl

F. Iurlano, A density result for gsbd and its application to the approximation of brittle fracture energies. Cal. Var. Partial Differ. Equ. 51 (2014) 315–342. | DOI | MR | Zbl

P.-M. Suquet, Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique 20 (1981) 3–39. | MR | Zbl

R. Temam and G. Strang, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. | DOI | MR | Zbl

M. Xavier, E.A. Fancello, J.M.C. Farias, N. Van Goethem and A.A. Novotny, Topological derivative-based fracture modelling in brittle materials: a phenomenological approach. Eng. Fract. Mech. 179 (2017) 13–27. | DOI

M. Xavier, N. Van Goethem and A.A. Novotny, A simplified model of fracking based on the topological derivative concept. Int. J. Sol. Struct. 139 (2018) 211–223. | DOI

K. Yoshioka, C. Chukwudozie and B. Bourdin, A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses. In: Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA (2013).

Cité par Sources :