Finite element method with local damage of the mesh
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1871-1891.

We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.

DOI : 10.1051/m2an/2019023
Classification : 65N30, 65N12, 65N15
Mots-clés : Finite elements, mesh quality, a priori estimates, conditioning
Duprez, Michel 1 ; Lleras, Vanessa 1 ; Lozinski, Alexei 1

1
@article{M2AN_2019__53_6_1871_0,
     author = {Duprez, Michel and Lleras, Vanessa and Lozinski, Alexei},
     title = {Finite element method with local damage of the mesh},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1871--1891},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019023},
     mrnumber = {4019760},
     zbl = {1434.65250},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019023/}
}
TY  - JOUR
AU  - Duprez, Michel
AU  - Lleras, Vanessa
AU  - Lozinski, Alexei
TI  - Finite element method with local damage of the mesh
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1871
EP  - 1891
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019023/
DO  - 10.1051/m2an/2019023
LA  - en
ID  - M2AN_2019__53_6_1871_0
ER  - 
%0 Journal Article
%A Duprez, Michel
%A Lleras, Vanessa
%A Lozinski, Alexei
%T Finite element method with local damage of the mesh
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1871-1891
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019023/
%R 10.1051/m2an/2019023
%G en
%F M2AN_2019__53_6_1871_0
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei. Finite element method with local damage of the mesh. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1871-1891. doi : 10.1051/m2an/2019023. http://www.numdam.org/articles/10.1051/m2an/2019023/

L. Anders, M. Kent-Andre and G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg (2012). | Zbl

T. Apel, Anisotropic finite elements: Local estimates and applications. Advances in Numerical, edited by B.G. Teubner, Stuttgart (1999). | MR | Zbl

I. Babuška and A.K. Aziz, On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214–226. | DOI | MR | Zbl

R.E. Barnhill and J.A. Gregory, Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1975/76) 215–229. | DOI | MR | Zbl

J. Brandts, S. Korotov, M. Křížek, On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008) 2227–2233. | DOI | MR | Zbl

J. Brandts, S. Korotov and M. Křížek, Generalization of the Zlámal condition for simplicial finite elements in d . Appl. Math. 56 (2011) 417–424. | DOI | MR | Zbl

S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. In Vol. 15. Springer Science & Business Media, Berlin (2007). | MR | Zbl

M. Bucki, C. Lobos and Y. Payan, A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14 (2010) 303–317. | DOI

E. Burman, Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. | DOI | MR | Zbl

E. Burman, S. Claus, P. Hansbo, M.G. Larson and A. Massing, CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501. | DOI | MR | Zbl

P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

A. Hannukainen, S. Korotov and M. Křížek, The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012) 79–88. | DOI | MR | Zbl

J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009) 1474–1499. | DOI | MR | Zbl

P. Jamet, Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Fr. Automat. Inf. Rech. Oper. Sér. 10 (1976) 43–60. | Numdam | MR | Zbl

P. Jamet, Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14 (1977) 925–930. | DOI | MR | Zbl

K. Kobayashi and T. Tsuchiya, On the circumradius condition for piecewise linear triangular elements. Jpn. J. Ind. Appl. Math. 32 (2015) 65–76. | DOI | MR | Zbl

V. Kučera, On necessary and sufficient conditions for finite element convergence (2016) Preprint arXiv:1601.02942.

M. Křížek, On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. | DOI | MR | Zbl

J. Malý and W. Ziemer, Fine regularity of solutions of elliptic partial differential equations. In, Vol. 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). | DOI | MR | Zbl

P. Oswald, Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math. 60 (2015) 473–484. | DOI | MR | Zbl

A. Ženíšek, Convergence of the finite element method for boundary value problems of a system of elliptic equations. Appl. Math. 14 (1969) 355–377. | DOI | MR | Zbl

M. Zlámal, On the finite element method. Numer. Math. 12 (1968) 394–409. | DOI | MR | Zbl

Cité par Sources :