We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.
Mots-clés : Finite elements, mesh quality, a priori estimates, conditioning
@article{M2AN_2019__53_6_1871_0, author = {Duprez, Michel and Lleras, Vanessa and Lozinski, Alexei}, title = {Finite element method with local damage of the mesh}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1871--1891}, publisher = {EDP-Sciences}, volume = {53}, number = {6}, year = {2019}, doi = {10.1051/m2an/2019023}, mrnumber = {4019760}, zbl = {1434.65250}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019023/} }
TY - JOUR AU - Duprez, Michel AU - Lleras, Vanessa AU - Lozinski, Alexei TI - Finite element method with local damage of the mesh JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 1871 EP - 1891 VL - 53 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019023/ DO - 10.1051/m2an/2019023 LA - en ID - M2AN_2019__53_6_1871_0 ER -
%0 Journal Article %A Duprez, Michel %A Lleras, Vanessa %A Lozinski, Alexei %T Finite element method with local damage of the mesh %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 1871-1891 %V 53 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019023/ %R 10.1051/m2an/2019023 %G en %F M2AN_2019__53_6_1871_0
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei. Finite element method with local damage of the mesh. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1871-1891. doi : 10.1051/m2an/2019023. http://www.numdam.org/articles/10.1051/m2an/2019023/
Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg (2012). | Zbl
, and ,Anisotropic finite elements: Local estimates and applications. Advances in Numerical, edited by , Stuttgart (1999). | MR | Zbl
,On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976) 214–226. | DOI | MR | Zbl
and ,Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1975/76) 215–229. | DOI | MR | Zbl
and ,On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008) 2227–2233. | DOI | MR | Zbl
, , ,Generalization of the Zlámal condition for simplicial finite elements in . Appl. Math. 56 (2011) 417–424. | DOI | MR | Zbl
, and ,The Mathematical Theory of Finite Element Methods. In Vol. 15. Springer Science & Business Media, Berlin (2007). | MR | Zbl
and ,A fast and robust patient specific finite element mesh registration technique: application to 60 clinical cases. Med. Image Anal. 14 (2010) 303–317. | DOI
, and ,Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. | DOI | MR | Zbl
,CutFEM: Discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501. | DOI | MR | Zbl
, , , and ,The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl
,The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012) 79–88. | DOI | MR | Zbl
, and ,A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009) 1474–1499. | DOI | MR | Zbl
and ,Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Fr. Automat. Inf. Rech. Oper. Sér. 10 (1976) 43–60. | Numdam | MR | Zbl
,Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14 (1977) 925–930. | DOI | MR | Zbl
,On the circumradius condition for piecewise linear triangular elements. Jpn. J. Ind. Appl. Math. 32 (2015) 65–76. | DOI | MR | Zbl
and ,On necessary and sufficient conditions for finite element convergence (2016) Preprint arXiv:1601.02942.
,On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992) 513–520. | DOI | MR | Zbl
,Fine regularity of solutions of elliptic partial differential equations. In, Vol. 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997). | DOI | MR | Zbl
and ,Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math. 60 (2015) 473–484. | DOI | MR | Zbl
,Convergence of the finite element method for boundary value problems of a system of elliptic equations. Appl. Math. 14 (1969) 355–377. | DOI | MR | Zbl
,On the finite element method. Numer. Math. 12 (1968) 394–409. | DOI | MR | Zbl
,Cité par Sources :