A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1269-1303.

A local weighted discontinuous Galerkin gradient discretization method for solving elliptic equations is introduced. The local scheme is based on a coarse grid and successively improves the solution solving a sequence of local elliptic problems in high gradient regions. Using the gradient discretization framework we prove convergence of the scheme for linear and quasilinear equations under minimal regularity assumptions. The error due to artificial boundary conditions is also analyzed, shown to be of higher order and shown to depend only locally on the regularity of the solution. Numerical experiments illustrate our theoretical findings and the local method’s accuracy is compared against the non local approach.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019022
Classification : 65N30, 65N15, 65Y20, 74D10
Mots-clés : Local scheme, discontinuous Galerkin, gradient discretization, quasilinear PDEs
Abdulle, Assyr 1 ; Rosilho de Souza, Giacomo 1

1
@article{M2AN_2019__53_4_1269_0,
     author = {Abdulle, Assyr and Rosilho de Souza, Giacomo},
     title = {A local discontinuous {Galerkin} gradient discretization method for linear and quasilinear elliptic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1269--1303},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019022},
     mrnumber = {3978475},
     zbl = {1448.65211},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019022/}
}
TY  - JOUR
AU  - Abdulle, Assyr
AU  - Rosilho de Souza, Giacomo
TI  - A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1269
EP  - 1303
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019022/
DO  - 10.1051/m2an/2019022
LA  - en
ID  - M2AN_2019__53_4_1269_0
ER  - 
%0 Journal Article
%A Abdulle, Assyr
%A Rosilho de Souza, Giacomo
%T A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1269-1303
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019022/
%R 10.1051/m2an/2019022
%G en
%F M2AN_2019__53_4_1269_0
Abdulle, Assyr; Rosilho de Souza, Giacomo. A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1269-1303. doi : 10.1051/m2an/2019022. http://www.numdam.org/articles/10.1051/m2an/2019022/

A. Abdulle and G. Rosilho De Souza, A local scheme for linear elliptic equations: a posteriori analysis (2018).

M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. In: Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, NY (2000). | MR | Zbl

P.F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. ESAIM: M2AN 41 (2007) 21–54. | DOI | Numdam | MR | Zbl

W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations., Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2003). | MR | Zbl

L. Barbié, I. Ramière and F. Lebon, An automatic multilevel refinement technique based on nested local meshes for nonlinear mechanics. Comput. Struct. 147 (2015) 14–25. | DOI

A. Brandt, Multi-level adaptive solutions to boundary-value. Math. Comput. 31 (1977) 333–390. | DOI | MR | Zbl

Z. Chen and H. Chen, Pointwise error estimates of discontinuous galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42 (2004) 1146–1166. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous galerkin methods. In Vol. 69 of Mathématiques et Applications. Springer, Berlin and Heidelberg (2012). | DOI | MR | Zbl

D.A. Di Pietro, A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection. SIAM J. Numer. Anal. 46 (2008) 805–831. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method, 1st edition. In Vol. 82 of Mathématiques et Applications. Springer International Publishing (2018). | MR

A. Ern, A.F. Stephansen and P. Zunino, A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29 (2009) 235–256. | DOI | MR | Zbl

R. Eymard and C. Guichard, Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput. Appl. Math. 37 (2017) 4023–4054. | DOI | MR | Zbl

X. Feng and O.A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1343–1365. | DOI | MR | Zbl

P. Ferket, Solving boundary value problems on composite grids with an application to combustion. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven (1996). | MR | Zbl

L.A. Freitag and C. Ollivier-Gooch, A cost/benefit analysis of simplicial mesh improvement techniques as measured by solution efficiency. Int. J. Comput. Geom. Appl. 10 (2000) 361–382. | DOI | MR | Zbl

W. Hackbusch, Local defect correction method and domain decomposition techniques, edited by K. Böhmer and H. Stetter. In: Defect Correction Methods. Computing Supplementa. Springer, Wien (1984), pp. 89–113. | DOI | MR | Zbl

R.B. Kellog, On the poisson equation with intersecting interfaces. Appl. Anal. An Int. J. 4 (1975) 101–129. | DOI | MR | Zbl

B.S. Kirk, J.W. Peterson, R.H. Stogner and G.F. Carey, libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006) 237–254. | DOI

J. Liu, L. Mu, X. Ye and R. Jari, Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236 (2012) 4537–4546. | DOI | MR | Zbl

S. Mccormick and J. Thomas, The fast adaptive composite grid (Fac) method for elliptic equations. Math. Comput. 46 (1986) 439–456. | DOI | MR | Zbl

S. Mccormick and R. Ulrich, A finite volume convergence theory for the fast adaptive composite grid methods. Appl. Numer. Math. 14 (1994) 91–103. | DOI | MR | Zbl

P. Morin, R.H. Nochetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. | DOI | MR | Zbl

S. Repin, A posteriori estimates for partial differential equations. In Vol. 4 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter GmbH and Co, Berlin (2008). | DOI | MR | Zbl

M.T. Van Genuchten, A closed – form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (1980) 892–898. | DOI

R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New-York, NY (1996). | Zbl

J. Wappler, Die lokale Defektkorrekturmethode zur adaptiven Diskretisierung el- liptischer Differentialgleichungen mit finiten Elementen. Ph.D. thesis, Christian-Al- brechts-Universität (1999).

Cité par Sources :