Analysis of the error in an iterative algorithm for asymptotic regulation of linear distributed parameter control systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1577-1606.

Applications of regulator theory are ubiquitous in control theory, encompassing almost all areas of systems and control engineering. Examples include active noise suppression [Banks et al., Decision and Control, Active Noise Control: Piezoceramic Actuators in Fluid/structure Interaction Models, IEEE, Los Alamitos, CA (1991) 2328–2333], design and control of energy efficient buildings [Borggaard et al., Control, Estimation and Optimization of Energy Efficient Buildings. Riverfront, St. Louis, MO (2009) 837–841.] and control of heat exchangers [Aulisa et al., IFAC-PapersOnLine 49 (2016) 104–109.]. Numerous other examples can be found in [Aulisa and Gilliam, A Practical Guide to Geometric Regulation for Distributed Parameter Systems. Chapman and Hall/CRC, Boca Raton (2015).]. In the geometric approach to asymptotic regulation the main object of interest is a pair of operator equations called the regulator equations, whose solution provides a control solving the tracking/disturbance rejection regulation problem. In this paper we present an iterative algorithm, called the β-iteration method, which is based on the geometric methodology, and delivers accurate control laws for approximate asymptotic regulation. This iterative scheme has been successfully applied to a wide range of linear and nonlinear multi-physics examples and in practice only one or two iterations are usually required to deliver sufficiently accurate results. One drawback to these research efforts is that no proof was given of the convergence of the method. This work contains a detailed analysis of the error in the iterative scheme for a large class of linear distributed parameter systems. In particular we show that the iterative errors converge at a geometric rate. We demonstrate our estimates on three control problems in multi-physics applications.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019021
Classification : 93C20, 65Y15
Mots-clés : Regulator problem, distributed parameter systems, geometric control, dynamic regulator equations, iterative numerical algorithm
Aulisa, Eugenio 1 ; Gilliam, David S. 1 ; Pathiranage, Thanuka W. 1

1
@article{M2AN_2019__53_5_1577_0,
     author = {Aulisa, Eugenio and Gilliam, David S. and Pathiranage, Thanuka W.},
     title = {Analysis of the error in an iterative algorithm for asymptotic regulation of linear distributed parameter control systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1577--1606},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019021},
     zbl = {1470.93069},
     mrnumber = {3989597},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019021/}
}
TY  - JOUR
AU  - Aulisa, Eugenio
AU  - Gilliam, David S.
AU  - Pathiranage, Thanuka W.
TI  - Analysis of the error in an iterative algorithm for asymptotic regulation of linear distributed parameter control systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1577
EP  - 1606
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019021/
DO  - 10.1051/m2an/2019021
LA  - en
ID  - M2AN_2019__53_5_1577_0
ER  - 
%0 Journal Article
%A Aulisa, Eugenio
%A Gilliam, David S.
%A Pathiranage, Thanuka W.
%T Analysis of the error in an iterative algorithm for asymptotic regulation of linear distributed parameter control systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1577-1606
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019021/
%R 10.1051/m2an/2019021
%G en
%F M2AN_2019__53_5_1577_0
Aulisa, Eugenio; Gilliam, David S.; Pathiranage, Thanuka W. Analysis of the error in an iterative algorithm for asymptotic regulation of linear distributed parameter control systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1577-1606. doi : 10.1051/m2an/2019021. http://www.numdam.org/articles/10.1051/m2an/2019021/

E. Aulisa and D.S. Gilliam, A Practical Guide to Geometric Regulation for Distributed Parameter Systems. Chapman and Hall/CRC, Boca Raton (2015). | DOI | MR

E. Aulisa and D.S. Gilliam, Regulation of a controlled Burgers’ equation: Tracking and disturbance rejection for general time dependent signals. In: Proceedings American Control Conference (2013) 1290–1295.

E. Aulisa and D.S. Gilliam, A numerical algorithm for set-Point regulation of non-linear parabolic control systems. Int. J. Numer. Anal. Model. 11 (2014) 54–85. | MR | Zbl

E. Aulisa, J.A. Burns and D.S. Gilliam, An example of thermal regulation of a two dimensional non-isothermal incompressible flow. In: Proceedings 51st IEEE conference on Decision and Control (2012) 1578–1583.

E. Aulisa, J.A. Burns and D.S. Gilliam, Velocity control of a counter-flow heat exchanger. IFAC-PapersOnLine 49 (2016) 104–109. | DOI

H.T. Banks, W. Fang and R.C. Smith, Active noise control: Piezoceramic actuators in fluid/structure interaction models. Decision and Control, Proceedings of the 30th IEEE Conference. IEEE, Los Alamitos, CA (1991) 2328–2333.

J. Borggaard, J.A. Burns, A. Surana and L. Zietsman, Control, estimation and optimization of energy efficient buildings. In: Proceedings of 2009 American Control Conference Hyatt Regency, Riverfront, St. Louis, MO (2009) 837–841. | DOI

C.I. Byrnes, D.S. Gilliam, I.G. Laukó and V.I. Shubov, Output regulation for linear distributed parameter systems. IEEE Trans. Auto. Control 45 (2000) 2236–2252. | DOI | MR | Zbl

E.J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Auto. Control AC-21 (1976) 25–34. | DOI | MR | Zbl

N. Dunford and J. Schwartz, Linear Operators. Interscience, NY Vols. I, II, III (1963). | MR

K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. In: Volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York (2000). | MR | Zbl

B.A. Francis, The linear multivariable regulator problem. SIAM J. Control. Optim. 14 (1977) 486–505. | DOI | MR | Zbl

B.A. Francis and W.M. Wonham, The internal model principle of control theory. Automatica 12 (1976) 457–465. | DOI | MR | Zbl

M. Haase, The Functional Calculus for Sectorial Operators. Springer Sciences & Business Media, Berlin, Heidelberg (2006). | DOI | MR | Zbl

D. Henry, Geometric theory of semilinear parabolic equations. In: Volume 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1981). | DOI | MR | Zbl

K. Mikkola, Infinite dimensional linear systems, optimal control and algebraic Riccati equations. Doctoral dissertation, Helsinki University of Technology (2002). | MR | Zbl

T. Kato, Perturbation Theory of Linear Operators. Springer-Verlag, Berlin, Heidelberg (1966). | MR | Zbl

T.W. Pathiranage, Analysis of the Error in an Iterative Algorithm for Solution of the Regulator Equations for Linear Distributed Parameter Control Systems. Ph.D. thesis, Texas Tech University (2016).

S.A. Pohjolainen, Robust multivariable PI-controller for infinite Dimensional Systems. IEEE Trans. Auto. Control AC-27 (1982) 17–30. | DOI | MR | Zbl

S.A. Pohjolainen, On the asymptotic regulation problem for distributed parameter systems. In: Proc. Third Symposium on Control of Distributed Parameter Systems, Toulouse, France (1982). | MR | Zbl

V. Natarajan, D.S. Gilliam and G. Weiss, The state feedback regulator problem for regular linear systems. IEEE Trans. Automatic Control 59 (2014) 2708–2723. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | DOI | MR | Zbl

P. Holmes, A nonlinear oscillator with strange attractors. Phil. Trans. R. Soc. London Ser. A Math. Phys. Sci. 292 (1979) 419–448. | MR | Zbl

L. Paunonen, Robustness of stability of C0-semigroups. Master’s thesis, Tampere University of Technology (2007).

J.M. Schumacher, Finite-dimensional regulators for a class of infinite dimensional systems. Syst. Control Lett. 3 (1983) 7–12. | DOI | MR | Zbl

J.M. Schumacher, Dynamic Feedback in Finite - and Infinite-Dimensional Linear Systems, Mathematical Centre Tracts No. 143. Mathematical Centre, Amsterdam (1981). | MR | Zbl

O.J. Staffans, Well-posed Linear Systems. Cambridge University Press, Cambridge (2005). | DOI | MR | Zbl

W.M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd edn. Springer Verlag, New York (1979). | MR | Zbl

Cité par Sources :