Finite volume methods are widely used, in particular because they allow an explicit and local computation of a discrete gradient. This computation is only based on the values of a given scalar field. In this contribution, we wish to achieve the same goal in a mixed finite element context of Petrov–Galerkin type so as to ensure a local computation of the gradient at the interfaces of the elements. The shape functions are the Raviart–Thomas finite elements. Our purpose is to define test functions that are in duality with these shape functions: precisely, the shape and test functions will be asked to satisfy some orthogonality property. This paradigm is addressed for the discrete solution of the Poisson problem. The general theory of Babuška brings necessary and sufficient stability conditions for a Petrov–Galerkin mixed problem to be convergent. In order to ensure stability, we propose specific constraints for the dual test functions. With this choice, we prove that the mixed Petrov–Galerkin scheme is identical to the four point finite volume scheme of Herbin, and to the mass lumping approach developed by Baranger, Maitre and Oudin. Convergence is proven with the usual techniques of mixed finite elements.
Mots-clés : inf-sup condition, finite volumes, mixed formulation
@article{M2AN_2019__53_5_1553_0, author = {Dubois, Francois and Greff, Isabelle and Pierre, Charles}, title = {Raviart{\textendash}Thomas finite elements of {Petrov{\textendash}Galerkin} type}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1553--1576}, publisher = {EDP-Sciences}, volume = {53}, number = {5}, year = {2019}, doi = {10.1051/m2an/2019020}, zbl = {1427.65335}, mrnumber = {3989596}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019020/} }
TY - JOUR AU - Dubois, Francois AU - Greff, Isabelle AU - Pierre, Charles TI - Raviart–Thomas finite elements of Petrov–Galerkin type JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 1553 EP - 1576 VL - 53 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019020/ DO - 10.1051/m2an/2019020 LA - en ID - M2AN_2019__53_5_1553_0 ER -
%0 Journal Article %A Dubois, Francois %A Greff, Isabelle %A Pierre, Charles %T Raviart–Thomas finite elements of Petrov–Galerkin type %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 1553-1576 %V 53 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019020/ %R 10.1051/m2an/2019020 %G en %F M2AN_2019__53_5_1553_0
Dubois, Francois; Greff, Isabelle; Pierre, Charles. Raviart–Thomas finite elements of Petrov–Galerkin type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1553-1576. doi : 10.1051/m2an/2019020. http://www.numdam.org/articles/10.1051/m2an/2019020/
[1] An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. | DOI | MR | Zbl
,[2] Convergence of a symmetric mpfa method on quadrilateral grids. Comput. Geosci. 11 (2007) 333–345. | DOI | MR | Zbl
, , , and ,[3] The maximum angle condition for mixed and nonconforming elements: application to the stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. | DOI | MR | Zbl
and ,[4] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12 (1959) 623–727. | DOI | MR | Zbl
, and ,[5] Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. | DOI | MR | Zbl
, and ,[6] Error-bounds for finite element method. Numer. Math. 16 (1971) 322–333. | DOI | MR | Zbl
,[7] Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445–465. | DOI | Numdam | MR | Zbl
, and ,[8] Boundary conditions for Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications IV (2005) 305–314. | MR | Zbl
, , and ,[9] On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: M2AN 8 (1974) 129–151. | Numdam | MR | Zbl
,[10] On the finite volume reformulation of the mixed finite element method for elliptic and parabolic PDE on triangles. Comput. Methods Appl. Mech. Eng. 192 (2003) 655–682. | DOI | MR | Zbl
, and ,[11] The finite element method for elliptic problems. Studies in Mathematics and Applications. North Holland, Amsterdam 4 (1978). | MR | Zbl
,[12] Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. | DOI | Numdam | MR | Zbl
, and ,[13] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl
and ,[14] Finite volumes and mixed Petrov-Galerkin finite elements: the unidimensional problem. Numer. Methods Partial Differ. Equ. 16 (2000) 335–360. | DOI | MR | Zbl
,[15] Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Elsevier Science & Technology (2002) 203–210. | Zbl
,[16] Dual Raviart–Thomas mixed finite elements. Preprint arXiv:1012.1691 (2010).
,[17] Finite volume methods, in . Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000). | DOI | MR | Zbl
, and ,[18] A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100 (1992) 275–290. | DOI | MR | Zbl
,[19] Des mathématiciens découvrent les volumes finis. Matapli 28 (1991) 37–48.
, and ,[20] Displacement and equilibrium models in the finite element method. In: Symposium Numerical Methods in Elasticity, edited by . Holister, University College of Swansea (1965). | Zbl
,[21] Résolution numérique des problèmes multidimensionnels de la dynamique des gaz. “Mir’”, Moscow. Translated from the Russian by Valéri Platonov (1979). | MR | Zbl
, , , and ,[22] An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ. 11 (1995) 165–173. | DOI | MR | Zbl
,[23] Une méthode de volumes finis pour les équations elliptiques du second ordre. C.R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1433–1436. | DOI | MR | Zbl
,[24] Differencing of the diffusion equation in lagrangian hydrodynamic codes. J. Comput. Phys. 39 (1981) 375–395. | DOI | MR | Zbl
,[25] The mathematical theory of viscous incompressible flow. Mathematics and Its Applications, 2nd edition (Revised Second ed.). Gordon and Breach, New York–London–Paris–Montreux–Tokyo–Melbourne (1969) XVIII+224. | MR | Zbl
,[26] CEL: a time-dependent, two-space-dimensional, coupled Euler-Lagrange code. In: Advances in Research and Applications. Academic Press, New York and London (1964).
,[27] Numerical Heat transfer and fluid flowSeries in Computational Methods in Mechanics and Thermal. CRC Press, Boca Raton (1980). | Zbl
,[28] An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl
and ,[29] Physical constraints in numerical calculations of diffusion. J. Comput. Phys. 42 (1981) 20–52. | DOI | MR | Zbl
,[30] Application of Galerkin’s method to the problem of stability of flow of a viscous fluid. J. Appl. Math. Mech. 4 (1940) 3–12. | JFM
,[31] A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Methods. In Vol. 606 of Lecture Notes in Math. (1977) 292–315. | DOI | MR | Zbl
and ,[32] Introduction à l’analyse numérique des équations aux dérivées partielles. Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983). | MR | Zbl
and ,[33] Be03, programme de calcul tridimensionnel de la transmission de chaleur et de l’ablation. Rapport Aerospatiale Les Mureaux (1982).
,[34] Mixed and Hybrid Methods. Elsevier Science Publishers, Amsterdam (1991). | MR | Zbl
and ,[35] Finite volume methods for elliptic problems: Convergence on unstructured meshes. Numer. Methods Mech. (Concepción, 1995) 371 (1997) 163–174. | MR | Zbl
and ,[36] Mixed finite volume methods. Fourth World Congress on Computational Mechanics (Buenos Aires, 1998). Int. J. Numer. Methods Eng. 46 (1999) 1351–1366. | MR | Zbl
and ,[37] Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367–391. | DOI | Numdam | MR | Zbl
,[38] Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | MR | Zbl
and ,[39] Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 133 (1908) 97–178. | JFM
,[40] A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44 (2006) 2082–2106. | DOI | MR | Zbl
and ,[41] From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Int. J. Numer. Methods Eng. 59 (2004) 365–388. | DOI | MR | Zbl
, and ,[42] A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys. 149 (1999) 148–167. | DOI | MR | Zbl
, , and ,Cité par Sources :