Raviart–Thomas finite elements of Petrov–Galerkin type
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1553-1576.

Finite volume methods are widely used, in particular because they allow an explicit and local computation of a discrete gradient. This computation is only based on the values of a given scalar field. In this contribution, we wish to achieve the same goal in a mixed finite element context of Petrov–Galerkin type so as to ensure a local computation of the gradient at the interfaces of the elements. The shape functions are the Raviart–Thomas finite elements. Our purpose is to define test functions that are in duality with these shape functions: precisely, the shape and test functions will be asked to satisfy some orthogonality property. This paradigm is addressed for the discrete solution of the Poisson problem. The general theory of Babuška brings necessary and sufficient stability conditions for a Petrov–Galerkin mixed problem to be convergent. In order to ensure stability, we propose specific constraints for the dual test functions. With this choice, we prove that the mixed Petrov–Galerkin scheme is identical to the four point finite volume scheme of Herbin, and to the mass lumping approach developed by Baranger, Maitre and Oudin. Convergence is proven with the usual techniques of mixed finite elements.

DOI : 10.1051/m2an/2019020
Classification : 65N08, 65N12, 65N30
Mots-clés : inf-sup condition, finite volumes, mixed formulation
Dubois, Francois 1 ; Greff, Isabelle 1 ; Pierre, Charles 1

1
@article{M2AN_2019__53_5_1553_0,
     author = {Dubois, Francois and Greff, Isabelle and Pierre, Charles},
     title = {Raviart{\textendash}Thomas finite elements of {Petrov{\textendash}Galerkin} type},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1553--1576},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019020},
     zbl = {1427.65335},
     mrnumber = {3989596},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019020/}
}
TY  - JOUR
AU  - Dubois, Francois
AU  - Greff, Isabelle
AU  - Pierre, Charles
TI  - Raviart–Thomas finite elements of Petrov–Galerkin type
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1553
EP  - 1576
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019020/
DO  - 10.1051/m2an/2019020
LA  - en
ID  - M2AN_2019__53_5_1553_0
ER  - 
%0 Journal Article
%A Dubois, Francois
%A Greff, Isabelle
%A Pierre, Charles
%T Raviart–Thomas finite elements of Petrov–Galerkin type
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1553-1576
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019020/
%R 10.1051/m2an/2019020
%G en
%F M2AN_2019__53_5_1553_0
Dubois, Francois; Greff, Isabelle; Pierre, Charles. Raviart–Thomas finite elements of Petrov–Galerkin type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1553-1576. doi : 10.1051/m2an/2019020. http://www.numdam.org/articles/10.1051/m2an/2019020/

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405–432. | DOI | MR | Zbl

[2] I. Aavatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler and I. Yotov, Convergence of a symmetric mpfa method on quadrilateral grids. Comput. Geosci. 11 (2007) 333–345. | DOI | MR | Zbl

[3] G. Acosta and R.G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. | DOI | MR | Zbl

[4] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12 (1959) 623–727. | DOI | MR | Zbl

[5] T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. | DOI | MR | Zbl

[6] I. Babuška, Error-bounds for finite element method. Numer. Math. 16 (1971) 322–333. | DOI | MR | Zbl

[7] J. Baranger, J.-F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445–465. | DOI | Numdam | MR | Zbl

[8] S. Borel, F. Dubois, C. Le Potier and M.M. Tekitek, Boundary conditions for Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications IV (2005) 305–314. | MR | Zbl

[9] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: M2AN 8 (1974) 129–151. | Numdam | MR | Zbl

[10] G. Chavent, A. Younès and P. Ackerer, On the finite volume reformulation of the mixed finite element method for elliptic and parabolic PDE on triangles. Comput. Methods Appl. Mech. Eng. 192 (2003) 655–682. | DOI | MR | Zbl

[11] P.-G. Ciarlet, The finite element method for elliptic problems. Studies in Mathematics and Applications. North Holland, Amsterdam 4 (1978). | MR | Zbl

[12] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. | DOI | Numdam | MR | Zbl

[13] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl

[14] F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements: the unidimensional problem. Numer. Methods Partial Differ. Equ. 16 (2000) 335–360. | DOI | MR | Zbl

[15] F. Dubois, Petrov-Galerkin finite volumes. In: Finite Volumes for Complex Applications, III (Porquerolles, 2002). Elsevier Science & Technology (2002) 203–210. | Zbl

[16] F. Dubois, Dual Raviart–Thomas mixed finite elements. Preprint arXiv:1012.1691 (2010).

[17] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in . Handb. Numer. Anal. VII. North-Holland, Amsterdam (2000). | DOI | MR | Zbl

[18] I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100 (1992) 275–290. | DOI | MR | Zbl

[19] I. Faille, T. Gallouët and R. Herbin, Des mathématiciens découvrent les volumes finis. Matapli 28 (1991) 37–48.

[20] B. Fraeijs De Veubeke, Displacement and equilibrium models in the finite element method. In: Symposium Numerical Methods in Elasticity, edited by J. Wiley. Holister, University College of Swansea (1965). | Zbl

[21] S. Godounov, A. Zabrodin, M. Ivanov, A. Kraiko and G. Prokopov, Résolution numérique des problèmes multidimensionnels de la dynamique des gaz. “Mir’”, Moscow. Translated from the Russian by Valéri Platonov (1979). | MR | Zbl

[22] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ. 11 (1995) 165–173. | DOI | MR | Zbl

[23] F. Hermeline, Une méthode de volumes finis pour les équations elliptiques du second ordre. C.R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1433–1436. | DOI | MR | Zbl

[24] D.S. Kershaw, Differencing of the diffusion equation in lagrangian hydrodynamic codes. J. Comput. Phys. 39 (1981) 375–395. | DOI | MR | Zbl

[25] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Mathematics and Its Applications, 2nd edition (Revised Second ed.). Gordon and Breach, New York–London–Paris–Montreux–Tokyo–Melbourne (1969) XVIII+224. | MR | Zbl

[26] W.-F. Noh, CEL: a time-dependent, two-space-dimensional, coupled Euler-Lagrange code. In: Advances in Research and Applications. Academic Press, New York and London (1964).

[27] S.V. Patankar, Numerical Heat transfer and fluid flowSeries in Computational Methods in Mechanics and Thermal. CRC Press, Boca Raton (1980). | Zbl

[28] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl

[29] G.J. Pert, Physical constraints in numerical calculations of diffusion. J. Comput. Phys. 42 (1981) 20–52. | DOI | MR | Zbl

[30] G.I. Petrov, Application of Galerkin’s method to the problem of stability of flow of a viscous fluid. J. Appl. Math. Mech. 4 (1940) 3–12. | JFM

[31] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Methods. In Vol. 606 of Lecture Notes in Math. (1977) 292–315. | DOI | MR | Zbl

[32] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983). | MR | Zbl

[33] A. Rivas, Be03, programme de calcul tridimensionnel de la transmission de chaleur et de l’ablation. Rapport Aerospatiale Les Mureaux (1982).

[34] J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods. Elsevier Science Publishers, Amsterdam (1991). | MR | Zbl

[35] J.-M. Thomas and D. Trujillo, Finite volume methods for elliptic problems: Convergence on unstructured meshes. Numer. Methods Mech. (Concepción, 1995) 371 (1997) 163–174. | MR | Zbl

[36] J.-M. Thomas and D. Trujillo, Mixed finite volume methods. Fourth World Congress on Computational Mechanics (Buenos Aires, 1998). Int. J. Numer. Methods Eng. 46 (1999) 1351–1366. | MR | Zbl

[37] M. Vohralík, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367–391. | DOI | Numdam | MR | Zbl

[38] M. Vohralík and B.I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. | DOI | MR | Zbl

[39] G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 133 (1908) 97–178. | JFM

[40] M.F. Wheeler and I. Yotov, A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44 (2006) 2082–2106. | DOI | MR | Zbl

[41] A. Younès, P. Ackerer and G. Chavent, From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Int. J. Numer. Methods Eng. 59 (2004) 365–388. | DOI | MR | Zbl

[42] A. Younès, R. Mosé, P. Ackerer and G. Chavent, A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys. 149 (1999) 148–167. | DOI | MR | Zbl

Cité par Sources :