Variational method for a backward problem for a time-fractional diffusion equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1223-1244.

This paper is devoted to solve a backward problem for a time-fractional diffusion equation by a variational method. The regularity of a weak solution for the direct problem as well as the existence and uniqueness of a weak solution for the adjoint problem are proved. We formulate the backward problem into a variational problem by using the Tikhonov regularization method, and obtain an approximation to the minimizer of the variational problem by using a conjugate gradient method. Four numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed algorithm.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019019
Classification : 65M32, 35R11
Mots-clés : Backward problem, fractional diffusion equation, Tikhonov regularization, variational method, conjugate gradient method
Wei, Ting 1 ; Xian, Jun 1

1
@article{M2AN_2019__53_4_1223_0,
     author = {Wei, Ting and Xian, Jun},
     title = {Variational method for a backward problem for a time-fractional diffusion equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1223--1244},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019019},
     mrnumber = {3978472},
     zbl = {1471.65128},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019019/}
}
TY  - JOUR
AU  - Wei, Ting
AU  - Xian, Jun
TI  - Variational method for a backward problem for a time-fractional diffusion equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1223
EP  - 1244
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019019/
DO  - 10.1051/m2an/2019019
LA  - en
ID  - M2AN_2019__53_4_1223_0
ER  - 
%0 Journal Article
%A Wei, Ting
%A Xian, Jun
%T Variational method for a backward problem for a time-fractional diffusion equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1223-1244
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019019/
%R 10.1051/m2an/2019019
%G en
%F M2AN_2019__53_4_1223_0
Wei, Ting; Xian, Jun. Variational method for a backward problem for a time-fractional diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1223-1244. doi : 10.1051/m2an/2019019. http://www.numdam.org/articles/10.1051/m2an/2019019/

B. Berkowitz, H. Scher and S.E. Silliman, Anomalous transport in laboratory scale, heterogeneous porous media. Water Resour. Res. 36 (2000) 149–C158. | DOI

R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience, Vol. 1, New York (1953). | MR | Zbl

H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. In: Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht (1996). | MR | Zbl

K.M. Hanke and L.P.C. Hansen, Regularization methods for large-scale problems. Surv. Math. Ind. 3 (1993) 253–315. | MR | Zbl

B.I. Henry, T.A. Langlands and S.L. Wearne, Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100 (2008) 128103. | DOI

Y.J. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations. Sci. China Math. 235 (2011) 3285–3290. | MR | Zbl

A.A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204. Elsevier Science Limited (2006). | MR | Zbl

Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–C1552. | DOI | MR | Zbl

J.J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation. Appl. Anal. 89 (2010) 1769–1788. | DOI | MR | Zbl

Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14 (2011) 110–124. | DOI | MR | Zbl

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations. Phys. A Stat. Mech. Appl. 278 (2000) 107–125. | DOI | MR

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | MR | Zbl

R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: from the langevin equation to fractional diffusion. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdisciplinary Top. 61 (2000) 6308–6311. | Zbl

V.A. Morozov, Methods for Solving Incorrectly Posed Problems. Springer-Verlag (1984). | DOI | MR

D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008) 1138–1145. | MR | Zbl

I. Podlubny, Fractional differential equations. In: Mathematics in Science and Engineering (1999). | MR | Zbl

H. Pollard, The completely monotonic character of the Mittag-Leffler function Eα(−x). Bull. Am. Math. Soc. 54 (1948) 1115–1116. | DOI | MR | Zbl

M. Raberto, E. Scalas and F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A Stat. Mech. Appl. 314 (2002) 749–755. | DOI | Zbl

C.X. Ren, X. Xu and S. Lu, Regularization by projection for a backward problem of the time-fractional diffusion equation. J. Inverse Ill-Posed Probl. 22 (2014) 121–139. | DOI | MR | Zbl

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011) 426C447. | DOI | MR | Zbl

S. Shen, F. Liu, V. Anh and I. Turner, Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 87–99. | MR

I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after einstein’s brownian motion. Chaos 15 (2005) 26103. | DOI | MR | Zbl

L.L. Sun and T. Wei, Identification of the zeroth-order coefficient in a time fractional diffusion equation. Appl. Numer. Math. 111 (2017) 160–180. | DOI | MR | Zbl

J.G. Wang and T. Wei, An iterative method for backward time-fractional diffusion problem. Numer. Methods Part. Differ. Equ. 30 (2014) 2029–2041. | DOI | MR | Zbl

J.G. Wang, T. Wei and Y.B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 37 (2013) 8518–8532. | DOI | MR | Zbl

L.Y. Wang and J.J. Liu, Data regularization for a backward time-fractional diffusion problem. Comput. Math. Appl. 64 (2012) 3613–3626. | MR | Zbl

T. Wei, X.L. Li and Y.S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 32 (2016) 085003. | DOI | MR | Zbl

T. Wei and J.G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM: M2AN 48 (2014) 603–621. | DOI | Numdam | MR | Zbl

T. Wei and J.G. Wang, Determination of Robin coefficient in a fractional diffusion problem. Appl. Math. Model. Simul. Comput. Eng. Environ. Syst. 40 (2016) 7948–7961. | MR | Zbl

T. Wei and Z.Q. Zhang, Robin coefficient identification for a time-fractional diffusion equation. Inverse Probl. Sci. Eng. 24 (2016) 1–20. | MR | Zbl

W. Wyss, The fractional diffusion equation. J. Math. Phys. 27 (1986) 2782–2785. | DOI | MR | Zbl

S.B. Yuste, K. Lindenberg and J.J. Ruiz-Lorenzo, Subdiffusion-limited reactions. Chem. Phys. 284 (2002) 169–180. | DOI

Cité par Sources :