On a class of derivative Nonlinear Schrödinger-type equations in two spatial dimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1477-1505.

We present analytical results and numerical simulations for a class of nonlinear dispersive equations in two spatial dimensions. These equations are of (derivative) nonlinear Schrödinger type and have recently been obtained by Dumas et al. in the context of nonlinear optics. In contrast to the usual nonlinear Schrödinger equation, this new model incorporates the additional effects of self-steepening and partial off-axis variations of the group velocity of the laser pulse. We prove global-in-time existence of the corresponding solution for various choices of parameters. In addition, we present a series of careful numerical simulations concerning the (in-)stability of stationary states and the possibility of finite-time blow-up.

DOI : 10.1051/m2an/2019018
Classification : 65M70, 65L05, 35Q55
Mots-clés : Nonlinear Schrödinger equation, derivative nonlinearity, orbital stability, finite-time blow-up, self-steepening, spectral resolution, Runge–Kutta algorithm
Arbunich, Jack 1 ; Klein, Christian 1 ; Sparber, Christof 1

1
@article{M2AN_2019__53_5_1477_0,
     author = {Arbunich, Jack and Klein, Christian and Sparber, Christof},
     title = {On a class of derivative {Nonlinear} {Schr\"odinger-type} equations in two spatial dimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1477--1505},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019018},
     mrnumber = {3989598},
     zbl = {1427.65277},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019018/}
}
TY  - JOUR
AU  - Arbunich, Jack
AU  - Klein, Christian
AU  - Sparber, Christof
TI  - On a class of derivative Nonlinear Schrödinger-type equations in two spatial dimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1477
EP  - 1505
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019018/
DO  - 10.1051/m2an/2019018
LA  - en
ID  - M2AN_2019__53_5_1477_0
ER  - 
%0 Journal Article
%A Arbunich, Jack
%A Klein, Christian
%A Sparber, Christof
%T On a class of derivative Nonlinear Schrödinger-type equations in two spatial dimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1477-1505
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019018/
%R 10.1051/m2an/2019018
%G en
%F M2AN_2019__53_5_1477_0
Arbunich, Jack; Klein, Christian; Sparber, Christof. On a class of derivative Nonlinear Schrödinger-type equations in two spatial dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1477-1505. doi : 10.1051/m2an/2019018. http://www.numdam.org/articles/10.1051/m2an/2019018/

D.M. Ambrose and G. Simpson, Local existence theory for derivative nonlinear Schrödinger equations with non-integer power nonlinearities. SIAM J. Math. Anal. 47 (2015) 2241–2264. | DOI | MR | Zbl

P. Antonelli, J. Arbunich and C. Sparber, Regularizing nonlinear Schrödinger equations through partial off-axis variations. SIAM J. Math. Anal. 51 (2019) 110–130. | MR | Zbl

T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Royal Soc. London A 272 (1972) 47–78. | MR | Zbl

J.L. Bona, W.R. Mckinney and J.M. Restrepo, Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation. J. Nonl. Sci. 10 (2000) 603–638. | DOI | MR | Zbl

R. Carles, On Schrödinger equations with modified dispersion. Dyn. Partial Differ. Equ. 8 (2011) 173–184. | DOI | MR | Zbl

T. Cazenave, Semilinear Schrödinger equations. In Vol 10 of Courant Lecture Notes in Mathematics. American Mathematical Society (2003). | DOI | MR | Zbl

T. Cazenave, F. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, In Vol. 1394 of Lecture Notes Math. Springer, New York, NY (1989) 19–29. | MR | Zbl

M. Colin and M. Ohta, Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Lineaire 23 (2006) 753–764. | DOI | Numdam | MR | Zbl

A. Davey and K. Stewartson, On three-dimensional packets of water waves. Proc. R. Soc. Lond. Ser. A 338 (1974) 101–110. | DOI | MR | Zbl

T. Driscoll, A composite Runge-Kutta Method for the spectral solution of semilinear PDEs. J. Comput. Phys. 182 (2002) 357–367. | DOI | MR | Zbl

E. Dumas, D. Lannes and J. Szeftel, Variants of the focusing NLS equation. Derivation, justification and open problems related to filamentation. CRM Ser. Math. Phys. Springer (2016) 19–75. | MR

G. Fibich, The nonlinear Schrödinger equation: singular solutions and optical collapse. Springer Ser. Appl. Math. Sci. Springer Verlag 192 (2015). | MR | Zbl

Z. Guo, C. Ning and Y. Wu, Instability of the solitary wave solutions for the genenalized derivative Nonlinear Schrödinger equation in the critical frequency case. Preprint arXiv:1803.07700 (2018) | MR | Zbl

N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation. Phys. D 55 (1992) 14–36. | DOI | MR | Zbl

R. Jenkins, J. Liu, P. Perry and C. Sulem, Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys. 363 (2018) 1003–1049. | DOI | MR | Zbl

R. Jenkins, J. Liu, P. Perry and C. Sulem, Global well-posesedness for the derivative nonlinear Schrödinger equation Preprint arXiv:1710.03810 (2017) | Zbl

C. Klein, Fourth-order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation. Electron. Trans. Num. Anal. 29 (2008) 116–135. | MR | Zbl

C. Klein, B. Muite and K. Roidot, Numerical study of blowup in the Davey-Stewartson system. Discrete Contin. Dyn. Syst. Ser. B 18 (2013) 1361–1387. | MR | Zbl

C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Kadomtsev–Petviashvili equations. Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 1689–1717. | MR | Zbl

C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized Korteweg-de Vries equations. Phys. D 304 (2015) 52–78. | DOI | MR | Zbl

C. Klein and K. Roidot, Fourth order time-stepping for Kadomtsev–Petviashvili and Davey–Stewartson equations. SIAM J. Sci. Comput. 33 (2011) 3333–3356. | DOI | MR | Zbl

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers’ equation. Phys. D 295 (2015) 46–65. | DOI | MR | Zbl

C. Klein and J.-C. Saut, A numerical approach to Blow-up issues for Davey-Stewartson II type systems. Commun. Pure Appl. Anal. 14 (2015) 1443–1467. | DOI | MR | Zbl

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional Nonlinear Schrödinger equations. Proc. R. Soc. Lond. Ser. A 470 (2014) 20140364, 26 pp. | MR | Zbl

C. Klein and N. Stoilov, A numerical study of blow-up mechanisms for Davey-Stewartson II systems. Stud. Appl. Math. (2018), to appear. | MR | Zbl

R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167 (1986) 65–93. | DOI | MR | Zbl

X. Liu, G. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation. J. Nonlin. Sci. 23 (2013) 557–583. | DOI | MR | Zbl

X. Liu, G. Simpson and C. Sulem, Focusing singularity in a derivative nonlinear Schrödinger equation. Phys. D 262 (2013) 45–58. | MR | Zbl

M. Mcconnell, A. Fokas and B. Pelloni, Localised coherent solutions of the DSI and DSII equations a numerical study. Math. Comput. Simul. 69 (2005) 424–438. | DOI | MR | Zbl

F. Merle and P. Raphaël, On universality of blow up profile for L 2 critical nonlinear Schrödinger equation. Invent. Math. 156 (2004) 565–672. | DOI | MR | Zbl

F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Commun. Math. Phys. 253 (2005) 675–704. | DOI | MR | Zbl

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 25 (2006) 403–408. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, NY (1983). | DOI | MR | Zbl

Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7 (1986) 856–869. | DOI | MR | Zbl

C. Sulem and P.L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse. Springer Ser. Appl. Math. Sci. Springer, Berlin 139 (1999). | MR | Zbl

M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem. Fako l’Funk. Ekvacioj Jpn. Math. Soc. 23 (1980) 259–277. | MR | Zbl

Y. Wu, Global well-posedness on the derivative nonlinear Schrödinger equation revisited. Anal. PDE 8 (2015) 1101–1112. | DOI | MR | Zbl

Cité par Sources :