A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 987-1003.

Both practice and analysis of p-FEMs and adaptive hp-FEMs raise the question what increment in the current polynomial degree p guarantees a p-independent reduction of the Galerkin error. We answer this question for the p-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree p. We show that an increment proportional to p yields a p-robust error reduction and provide computational evidence that a constant increment does not.

DOI : 10.1051/m2an/2019015
Classification : 65N35, 65N30, 65N50
Mots-clés : Adaptive hp-FEM for elliptic problems, a posteriori error estimation, spectral-Galerkin approximations, saturation property
Canuto, Claudio 1 ; Nochetto, Ricardo H. 1 ; Stevenson, Rob P. 1 ; Verani, Marco 1

1
@article{M2AN_2019__53_3_987_0,
     author = {Canuto, Claudio and Nochetto, Ricardo H. and Stevenson, Rob P. and Verani, Marco},
     title = {A saturation property for the {spectral-Galerkin} approximation of a {Dirichlet} problem in a square},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {987--1003},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019015},
     zbl = {1426.65187},
     mrnumber = {3969160},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019015/}
}
TY  - JOUR
AU  - Canuto, Claudio
AU  - Nochetto, Ricardo H.
AU  - Stevenson, Rob P.
AU  - Verani, Marco
TI  - A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 987
EP  - 1003
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019015/
DO  - 10.1051/m2an/2019015
LA  - en
ID  - M2AN_2019__53_3_987_0
ER  - 
%0 Journal Article
%A Canuto, Claudio
%A Nochetto, Ricardo H.
%A Stevenson, Rob P.
%A Verani, Marco
%T A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 987-1003
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019015/
%R 10.1051/m2an/2019015
%G en
%F M2AN_2019__53_3_987_0
Canuto, Claudio; Nochetto, Ricardo H.; Stevenson, Rob P.; Verani, Marco. A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 987-1003. doi : 10.1051/m2an/2019015. http://www.numdam.org/articles/10.1051/m2an/2019015/

I. Babuška, A. Craig, J. Mandel and J. Pitkäranta, Efficient preconditioning for the p -version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624–661. | DOI | MR | Zbl

R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 285–301. | MR | Zbl

F.A. Bornemann, B. Erdmann and R. Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal. 33 (1996) 1188–1204. | DOI | MR | Zbl

M. Bürg and W. Dörfler, Convergence of an adaptive h p finite element strategy in higher space-dimensions. Appl. Numer. Math. 61 (2011) 1132–1146. | DOI | MR | Zbl

P. Binev, W. Dahmen and R. Devore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | DOI | MR | Zbl

P. Binev, Tree approximation for h p -adaptivity. SIAM J. Numer. Anal. 56 (2018) 3346–3357. | DOI | MR | Zbl

D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p -robust. Comput. Methods Appl. Mech. Eng. 198 (2009) 1189–1197. | DOI | MR | Zbl

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006). | DOI | MR

C. Canuto, R.H. Nochetto, R. Stevenson and M. Verani, Convergence and optimality of h p -AFEM. Numer. Math. 135 (2017) 1073–1119. | DOI | MR | Zbl

C. Canuto, R.H. Nochetto, R. Stevenson and M. Verani, On p -robust saturation for h p -AFEM. Comput. Math. Appl. 73 (2017) 2004–2022. | MR | Zbl

L. Demkowicz, J. Gopalakrishnan and J. Schöberl, Polynomial extension operators, Part III. Math. Comput. 81 (2012) 1289–1326. | DOI | MR | Zbl

W. Dörfler and R.H. Nochetto, Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. | DOI | MR | Zbl

A. Ern and M. Vohralk, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | DOI | MR | Zbl

A. Ern and M. Vohralk, Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Inria Paris-Rocquencourt. Available at https://hal.archives-ouvertes.fr/hal-01422204Hal:0122204 (2016). | Zbl

B. Guo and I. Babuška, The hp version of finite element method, Part 1: the basic approximation results. Comput. Mech. 1 (1986) 21–41. | DOI | Zbl

B. Guo and I. Babuška, The hp version of finite element method, Part 2: general results and application. Comput. Mech. 1 (1986) 203–220. | DOI | Zbl

J.M. Melenk and B.I. Wohlmuth, On residual-based a posteriori error estimation in h p -FEM. Adv. Comput. Math. 15 (2002) 311–331. | DOI | MR | Zbl

R.H. Nochetto, Removing the saturation assumption in a posteriori error analysis. Istit. Lombardo Accad. Sci. Lett. Rend. A 127 (1993) 67–82. | MR | Zbl

Cité par Sources :