Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1083-1124.

This study provides the analysis of the generalized 3D Stokes problem in a time dependent domain, modeling a solid in motion. The fluid viscosity is a non-linear function of the shear-rate and depends on a transported and diffused quantity. This is a natural model of flow at very low Reynolds numbers, typically at the microscale, involving a miscible, heterogeneous and shear-thinning incompressible fluid filling a complex geometry in motion. This one-way coupling is meaningful when the action produced by a solid in motion has a dominant effect on the fluid. Several mathematical aspects are developed. The penalized version of this problem is introduced, involving the penalization of the solid in a deformable motion but defined in a simple geometry (a periodic domain and/or between planes), which is of crucial interest for many numerical methods. All the equations of this partial differential system are analyzed separately, and then the coupled model is shown to be well-posed and to converge toward the solution of the initial problem. In order to illustrate the pertinence of such models, two meaningful micrometer scale real-life problems are presented: on the one hand, the dynamics of a polymer percolating the pores of a real rock and miscible in water; on the other hand, the dynamics of the strongly heterogeneous mucus bio-film, covering the human lungs surface, propelled by the vibrating ciliated cells. For both these examples the mathematical hypothesis are satisfied.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019013
Classification : 35Q30, 76D03, 76D07, 65M25, 68U20, 76Z05, 92B05
Mots-clés : Stokes equations, rheology. shear-thinning, moving geometry, variable viscosity flows, porous media, biomechanics
Sanchez, David 1 ; Hume, Laurène 1 ; Chatelin, Robin 1 ; Poncet, Philippe 1

1
@article{M2AN_2019__53_4_1083_0,
     author = {Sanchez, David and Hume, Laur\`ene and Chatelin, Robin and Poncet, Philippe},
     title = {Analysis of the {3D} non-linear {Stokes} problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1083--1124},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019013},
     zbl = {1428.35312},
     mrnumber = {3977079},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019013/}
}
TY  - JOUR
AU  - Sanchez, David
AU  - Hume, Laurène
AU  - Chatelin, Robin
AU  - Poncet, Philippe
TI  - Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1083
EP  - 1124
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019013/
DO  - 10.1051/m2an/2019013
LA  - en
ID  - M2AN_2019__53_4_1083_0
ER  - 
%0 Journal Article
%A Sanchez, David
%A Hume, Laurène
%A Chatelin, Robin
%A Poncet, Philippe
%T Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1083-1124
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019013/
%R 10.1051/m2an/2019013
%G en
%F M2AN_2019__53_4_1083_0
Sanchez, David; Hume, Laurène; Chatelin, Robin; Poncet, Philippe. Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1083-1124. doi : 10.1051/m2an/2019013. http://www.numdam.org/articles/10.1051/m2an/2019013/

[1] J.C. Adams, mudpack: multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput. 34 (1989) 113–146. | DOI | Zbl

[2] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, Cambridge, MA (2003). | MR | Zbl

[3] E.C. Bingham, Fluidity and Plasticity. McGraw-Hill, New York, NY (1922).

[4] F. Boyer and P. Fabrie, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Springer, Berlin (2005). | MR | Zbl

[5] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Springer, Berlin (2013). | MR | Zbl

[6] B. Button, L.-H. Cai, C. Ehre, M. Kesimer, D.B. Hill, J.K. Sheehan, R.C. Boucher and M. Rubinstein, Periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science (N.Y.) 337 (2012) 937–941. | DOI

[7] G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow. Differ. Equ. 8 (2003) 1453–1480. | MR | Zbl

[8] P. Carreau, Rheological equations from molecular network theories. Trans. Soc. Rheol. 16 (1972) 99–127. | DOI

[9] R. Chatelin, D. Anne-Archard, M. Murris-Espin, D. Sanchez, M. Thiriet, A. Didier and P. Poncet, Chapter 5 – Modeling cystic fibrosis and mucociliary clearance. In: Modeling of Microscale Transport in Biological Processes, edited by S.M. Becker. Academic Press, Cambridge, MA (2017) 113–154. | DOI

[10] R. Chatelin, D. Anne-Archard, M. Murris-Espin, M. Thiriet and P. Poncet, Numerical and experimental investigation of mucociliary clearance breakdown in cystic fibrosis. J. Biomech. 53 (2017) 56–63. | DOI

[11] R. Chatelin and P. Poncet, A hybrid grid-particle method for moving bodies in 3D stokes flow with variable viscosity. SIAM J. Sci. Comput. 35 (2013) B925–B949. | DOI | MR | Zbl

[12] R. Chatelin and P. Poncet, Hybrid grid–particle methods and penalization: a Sherman–Morrison–Woodbury approach to compute 3D viscous flows using FFT. J. Comput. Phys. 269 (2014) 314–328. | DOI | MR | Zbl

[13] R. Chatelin and P. Poncet, A parametric study of mucociliary transport by numerical simulations of 3D non-homogeneous mucus. J. Biomech. 49 (2016) 1772–1780. | DOI

[14] R. Chatelin, D. Sanchez and P. Poncet, Analysis of the penalized 3D variable viscosity stokes equations coupled to diffusion and transport. ESAIM: M2AN 50 (2016) 565–591. | DOI | Numdam | MR | Zbl

[15] G.-H. Cottet, R. Hildebrand, P. Koumoutsakos, C. Mimeau, I. Mortazavi and P. Poncet, Passive and active flow control using vortex methods. In: 6th International Conference on Vortex Flows and Vortex Models. Nagoya, Japan (November 2014).

[16] G.H. Cottet and P.D. Koumoutsakos, Vortex Methods: Theory and Practice. IOP Publishing, Bristol (2001). | MR | Zbl

[17] M.V. D’Angelo, H. Auradou, C. Allain and J.-P. Hulin, Pore scale mixing and macroscopic solute dispersion regimes in polymer flows inside two-dimensional model networks. Phys. Fluids 19 (2007) 033103. | DOI | Zbl

[18] A. Decoene, S. Martin and B. Maury, Microscopic modelling of active bacterial suspensions. MMNP 6 (2011) 98–129. | MR | Zbl

[19] L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. thesis, University of Frieburg, Germany (2002). | Zbl

[20] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents. In: Vol. 2017 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). | DOI | MR | Zbl

[21] L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces. In: FSDONA04 Proceedings, Milovy. Czech Republic, Citeseer 3858(2004).

[22] G. Duvaut and J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR | Zbl

[23] J.V. Fahy and B.F. Dickey, Airway mucus function and dysfunction.New England J. Med. 363 (2010) 2233–2247. PMID: 21121836. | DOI

[24] C. Foias and R. Temam, Remarques sur les équations de navier-stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Scuola Norm. Superiore Pisa - Classe di Scienze 5 (1978) 29–63. | Numdam | MR | Zbl

[25] J.L.M.S. Ganter, M. Milas and M. Rinaudo, On the viscosity of sodium poly(styrene sulphonate), a flexible polyelectrolyte. Polymer 33 (1992) 113–116. | DOI

[26] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer Berlin Heidelberg, Berlin, Heidelberg (1983). | Zbl

[27] H. Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11 (1982) 69–109. | DOI | Zbl

[28] J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. | DOI | MR | Zbl

[29] W.H. Herschel and R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z. 39 (1926) 291–300. | DOI

[30] C.P. Kelco, Keltrol/Kelzan, Xanthan gum book 8th edition (March 2007).

[31] M. Krotkiewski, I.S. Ligaarden, K.-A. Lie and D.W. Schmid, On the importance of the stokes-brinkman equations for computing effective permeability in karst reservoirs. Commun. Comput. Phys. 10 (2011) 1315–1332. | DOI | Zbl

[32] S.K. Lai, Y.-Y. Wang, D. Wirtz and J. Hanes, Micro- and macrorheology of mucus. Adv. Drug Delivery Rev. 61 (2009) 86–100. | DOI

[33] P. Lindqvist, Notes on the p-Laplace Equation. University of Jyväskylä (2006). | MR | Zbl

[34] J.-L. Lions, Quelques méthodes de résolution des problemes aux limites non linéaires. In Vol. 31. Dunod Paris (1969). | MR | Zbl

[35] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications In Vol. 1. (1968). | MR | Zbl

[36] J.J. Monaghan, Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253–262. | DOI | MR | Zbl

[37] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Academia, San Francisco, CA (1967). | MR | Zbl

[38] B. Noetinger, L. Hume, R. Chatelin and P. Poncet, The effective viscosity of a random mixture of fluids. Phys. Rev. Fluids 3 (2017) 014103. | DOI

[39] J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London 200 (1950) 523–541. | MR | Zbl

[40] E. Puchelle, J.M. Zahm and D. Quemada, Rheological properties controlling mucociliary frequency and respiratory mucus transport. Biorheology 24 (1987) 557–563. PMID: 3502756. | DOI

[41] M. Le Ravalec, B. Noetinger and L.H. Hu, The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning gaussian simulations. Math. Geol. 32 (2000) 701–723. | DOI

[42] M.J. Sanderson and M.A. Sleigh, Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J. Cell Sci. 47 (1981) 331–347. | DOI

[43] D.J. Smith, E.A. Gaffney and J.R. Blake, Modelling mucociliary clearance. Respir. Physiol. Neurobiol. 163 (2008) 178–188. | DOI

[44] G.A. Stahl and D.N. Schulz, Water-Soluble Polymers for Petroleum Recovery. Springer US (2012).

[45] P. Swarztrauber and R. Sweet, Efficient FORTRAN subprograms for the solution of elliptic partial differential equations (abstract). SIGNUM Newsl. 10 (1975). | DOI | Zbl

[46] M.D. Torres, B. Hallmark, D. Ian Wilson and L. Hilliou, Natural giesekus fluids: shear and extensional behavior of food gum solutions in the semidilute regime. AIChE J. 60 (2014) 3902–3915. | DOI

[47] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B. Springer New York, New York, NY (1990). | MR | Zbl

[48] L. Zhong, M. Oostrom, M.J. Truex, V.R. Vermeul and J.E. Szecsody, Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 244–245 (2013) 160–170. | DOI

Cité par Sources :