Superconvergence points of integer and fractional derivatives of special Hermite interpolations and its applications in solving FDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1061-1082.

In this paper, we study the theory of convergence and superconvergence for integer and fractional derivatives of the one-point and two-point Hermite interpolations. When considering the integer-order derivatives, exponential decay of the error is proved, and superconvergence points are located, at which the convergence rates are O ( N - 2 ) and O ( N - 1 . 5 ) better than the global rates for the one-point and two-point interpolations, respectively. Here N represents the degree of the interpolation polynomial. It is proved that the αth fractional derivative of ( u u N ) , with k < α < k + 1 , is bounded by its ( k + 1 ) -th derivative. Furthermore, the corresponding superconvergence points are predicted for fractional derivatives, and an eigenvalue method is proposed to calculate the superconvergence points for the Riemann–Liouville derivatives. In the application of the knowledge of superconvergence points to solve FDEs, we discover that a modified collocation method makes numerical solutions much more accurate than the traditional collocation method.

DOI : 10.1051/m2an/2019012
Classification : 65N35, 65M15, 26A33, 41A05, 41A10
Mots-clés : Superconvergence, Hermite interpolation, Riemann–Liouville derivative, Riesz fractional derivative, generalized Jacobi polynomial, fractional differential equations
Deng, Beichuan 1 ; Zhang, Jiwei 1 ; Zhang, Zhimin 1

1
@article{M2AN_2019__53_3_1061_0,
     author = {Deng, Beichuan and Zhang, Jiwei and Zhang, Zhimin},
     title = {Superconvergence points of integer and fractional derivatives of special {Hermite} interpolations and its applications in solving {FDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1061--1082},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019012},
     zbl = {1426.65188},
     mrnumber = {3974684},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019012/}
}
TY  - JOUR
AU  - Deng, Beichuan
AU  - Zhang, Jiwei
AU  - Zhang, Zhimin
TI  - Superconvergence points of integer and fractional derivatives of special Hermite interpolations and its applications in solving FDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1061
EP  - 1082
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019012/
DO  - 10.1051/m2an/2019012
LA  - en
ID  - M2AN_2019__53_3_1061_0
ER  - 
%0 Journal Article
%A Deng, Beichuan
%A Zhang, Jiwei
%A Zhang, Zhimin
%T Superconvergence points of integer and fractional derivatives of special Hermite interpolations and its applications in solving FDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1061-1082
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019012/
%R 10.1051/m2an/2019012
%G en
%F M2AN_2019__53_3_1061_0
Deng, Beichuan; Zhang, Jiwei; Zhang, Zhimin. Superconvergence points of integer and fractional derivatives of special Hermite interpolations and its applications in solving FDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1061-1082. doi : 10.1051/m2an/2019012. http://www.numdam.org/articles/10.1051/m2an/2019012/

R. Askey, Orthogonal Polynomials and Special Functions, IAM, Philadelphia (1975). | DOI | MR | Zbl

S.N. Bernstein, Sur l’ordre de la meilleure approximation des foncions continues par des polynomes de degré donné, Mém. Publ. Class Sci. Acad. Belgique 4 (1912) 1–103. | JFM

W. Bu, Y. Tang and J. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276 (2014) 26–38. | DOI | MR | Zbl

S. Chen, J. Shen and L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85 (2016) 1603–1638. | DOI | MR | Zbl

P.J. Davis, Interpolation and Approximation. Dover, New York, NY (1975). | MR | Zbl

K. Deng and W. Deng, Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation. Appl. Math. Lett. 25 (2012) 1815–1821. | DOI | MR | Zbl

B. Deng, Z. Zhang and X. Zhao, Superconvergence points for the spectral interpolation of Riesz fractional derivatives. Preprint arXiv:1709.10223 (2017).

B.-Y. Guo, J. Shen and L.-L. Wang, Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59 (2009) 1011–1028. | DOI | MR | Zbl

C. Huang, Y. Jiao, L.-L. Wang and Z. Zhang, Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal Generalized Jacobi functions. SIAM J. Numer. Anal. 54 (2016) 3357–3387. | DOI | MR | Zbl

C. Huang, Z. Zhang and Q. Song, Spectral methods for substantial fractional differential equations. J. Sci. Comput. 74 (2018) 1554–1574. | DOI | MR | Zbl

N. Kopteva and M. Stynes, An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 55 (2015) 1105–1123. | DOI | MR | Zbl

S. Lei and H. Sun, A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242 (2013) 715–725. | DOI | MR | Zbl

X. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108–2131. | DOI | MR | Zbl

C. Li, Z. Zhao and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62 (2011) 855–875. | MR | Zbl

C.P. Li, F.H. Zeng and F. Liu, Spectral approximations to the fractional integral and derivative. Frac. Calc. Appl. Anal. 15 (2012) 383–406. | DOI | MR | Zbl

Q. Lin and J. Lin, Finite element methods: accuracy and improvement. Mathematics Monograph Series 1. Science Press, Beijing (2006).

Z. Mao, S. Chen and J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106 (2016) 165–181. | DOI | MR | Zbl

Z. Mao and G. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56 (2018) 24–49. | DOI | MR | Zbl

H. Pang and H. Sun, Multigrid method for fractional diffusion equations. J. Comput. Phys. 231 (2012) 693–703. | DOI | MR | Zbl

J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in 2 . J. Comput. Appl. Math. 193 (2006) 243–268. | DOI | MR | Zbl

J. Shen, T. Tang and L-L. Wang, Spectral Methods: algorithms, analysis and applications. In Vol. 41 of Springer Series in Computational Mathematics. Springer (2011). | DOI | MR | Zbl

S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A novel numerical approximation for the space fractional advection-dispersion equation. IMA J. Appl. Math. 79 (2014) 421–444. | DOI | MR | Zbl

J. Shen, C. Sheng and Z. Wang, Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48 (2015) 315–329. | DOI | MR | Zbl

M. Stynes and L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35 (2015) 698–721. | DOI | MR | Zbl

C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813–823. | DOI | MR | Zbl

L.B. Wahlbin, Superconvergence in Galerkin finite element methods. In Vol. 1605 of Lecture Notes in Math, Springer-Verlag, Berlin (1995). | DOI | MR | Zbl

L.-L. Wang, X.D. Zhao and Z. Zhang, Superconvergence of Jacobi–Gauss-type spectral interpolation. J. Sci. Comput. 59 (2014) 667–687. | DOI | MR | Zbl

Z. Xie, L. Wang and X. Zhao, On exponential convergence of Gegenbauer interpolation and spectral differentiation, Math. Comput. 82 (2012) 1017–1036. | DOI | MR | Zbl

Q. Xu and J.S. Hesthaven, Stable multi-domain spectral penalty methods for fractional partial differential equations. J. Comput. Phys. 257 (2014) 241–258. | DOI | MR | Zbl

F. Zeng and C. Li, Fractional differential matrices with applications. Preprint arXiv:1404.4429 (2014).

F. Zeng, F. Liu, C.P. Li, K. Burrage, I. Turner and V. Anh, Crank-Nicolson ADI spectral method for the 2-D Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52 (2014) 2599–2622. | DOI | MR | Zbl

F. Zeng, Z. Zhang and G. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37 (2015) A2710–A2732. | DOI | MR | Zbl

Z. Zhang, Superconvergence of a Chebyshev spectral collocation method. J. Sci. Comput. 34 (2008) 237–246. | DOI | MR | Zbl

Z. Zhang, Superconvergence points of polynomial spectral interpolation. SIAM J. Numer. Anal. 50 (2012) 2966–2985. | DOI | MR | Zbl

X. Zhao and Z. Zhang, Superconvergence points of fractional spectral interpolation. SIAM J. Sci. Comput. 38 (2016) A598–A613. | DOI | MR | Zbl

X. Zhao, Z. Sun and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36 (2014) 2865–2886. | DOI | MR | Zbl

M. Zheng, F. Liu, I. Turner and V. Anh, A novel high order space-time spectral method for the time-fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37 (2015) A701–A724. | DOI | MR | Zbl

Cité par Sources :