Entropy stable essentially nonoscillatory methods based on RBF reconstruction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 925-958.

To solve hyperbolic conservation laws we propose to use high-order essentially nonoscillatory methods based on radial basis functions. We introduce an entropy stable arbitrary high-order finite difference method (RBF-TeCNOp) and an entropy stable second order finite volume method (RBF-EFV2) for one-dimensional problems. Thus, we show that methods based on radial basis functions are as powerful as methods based on polynomial reconstruction. The main contribution is the construction of an algorithm and a smoothness indicator that ensures an interpolation function which fulfills the sign-property on general one dimensional grids.

DOI : 10.1051/m2an/2019011
Classification : 35L65, 65M12, 65M06, 65M08, 65D05
Mots-clés : Radial basis functions, entropy stability, sign-property, finite differences, finite volume methods, high-order accuracy, ENO reconstruction
Hesthaven, Jan S. 1 ; Mönkeberg, Fabian 1

1
@article{M2AN_2019__53_3_925_0,
     author = {Hesthaven, Jan S. and M\"onkeberg, Fabian},
     title = {Entropy stable essentially nonoscillatory methods based on {RBF} reconstruction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {925--958},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019011},
     zbl = {1437.35484},
     mrnumber = {3969162},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019011/}
}
TY  - JOUR
AU  - Hesthaven, Jan S.
AU  - Mönkeberg, Fabian
TI  - Entropy stable essentially nonoscillatory methods based on RBF reconstruction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 925
EP  - 958
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019011/
DO  - 10.1051/m2an/2019011
LA  - en
ID  - M2AN_2019__53_3_925_0
ER  - 
%0 Journal Article
%A Hesthaven, Jan S.
%A Mönkeberg, Fabian
%T Entropy stable essentially nonoscillatory methods based on RBF reconstruction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 925-958
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019011/
%R 10.1051/m2an/2019011
%G en
%F M2AN_2019__53_3_925_0
Hesthaven, Jan S.; Mönkeberg, Fabian. Entropy stable essentially nonoscillatory methods based on RBF reconstruction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 925-958. doi : 10.1051/m2an/2019011. http://www.numdam.org/articles/10.1051/m2an/2019011/

T. Aboiyar, E.H. Georgoulis and A. Iske, High order weno finite volume schemes using polyharmonic spline reconstruction. In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory NAAT2006. Dept. of Mathematics. University of Leicester, Cluj-Napoca (Romania) (2006). | MR | Zbl

T. Aboiyar, E.H. Georgoulis and A. Iske, Adaptive ader methods using kernel-based polyharmonic spline weno reconstruction. SIAM J. Sci. Comput. 32 (2010) 3251–3277. | DOI | MR | Zbl

C. Bigoni and J.S. Hesthaven, Adaptive weno methods based on radial basis function reconstruction. J. Sci. Comput. 72 (2017) 986–1020. | DOI | MR | Zbl

J.P. Boyd, Error saturation in gaussian radial basis functions on a finite interval, J. Comput. Appl. Math. 234 (2010) 1435–1441. | DOI | MR | Zbl

P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and navier-stokes equations. Commun. Comput. Phys. 14 (2013) 1252–1286. | DOI | MR | Zbl

D. Derigs, A.R. Winters, G.J. Gassner and S. Walch, A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD. J. Comput. Phys. 330 (2017) 624–632. | DOI | MR | Zbl

T.A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43 (2002) 413–422. | DOI | MR | Zbl

J. Duchon, Splines Minimizing Rotation-invariant Semi-norms in Sobolev Spaces. Springer, Berlin (1977) 85–100. | MR | Zbl

G.E. Fasshauer and J.G. Zhang, On choosing ``optimal’’ shape parameters for RBF approximation. Numer. Algorithms 45 (2007) 345–368. | DOI | MR | Zbl

U.S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587–5609. | DOI | MR | Zbl

U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. | DOI | MR | Zbl

U.S. Fjordholm, S. Mishra and E. Tadmor, Eno reconstruction and eno interpolation are stable. Found. Comput. Math. 13 (2013) 139–159. | DOI | MR | Zbl

U.S. Fjordholm and D. Ray, A sign preserving weno reconstruction method. J. Sci. Comput. 68 (2016) 42–63. | DOI | MR | Zbl

B. Fornberg, E. Larsson and N. Flyer, Stable computations with gaussian radial basis functions in 2-D. Technical report, Department of Information Technology, Uppsala University (2009).

B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30 (2007) 60–80. | DOI | MR | Zbl

B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48 (2004) 853–867. | DOI | MR | Zbl

S. Gottlieb, D.I. Ketcheson and C.-W. Shu, High order strong stability preserving time discretizations. J. Sci. Comput. 38 (2009) 251–289. | DOI | MR | Zbl

A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71 (1987) 231–303. | DOI | MR | Zbl

A. Harten, J.M. Hyman, P.D. Lax and B. Keyfitz, On finite difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29 (1976) 297–322. | DOI | MR | Zbl

J.S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PN (2018). | DOI | MR | Zbl

S.N. Kružkov, First order quasilinear equations in several independent variables. Math. USSR-Sbornik 10 (1970) 217. | DOI | Zbl

E. Larsson and B. Fornberg, Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49 (2005) 103–130. | DOI | MR | Zbl

A.-Y. Le Roux, A numerical conception of entropy for quasi-linear equations. Math. Comput. 31 (1977) 848–872. | DOI | MR | Zbl

P.G. Lefloch, J.-M. Mercier and C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order. . SIAM J. Numer. Anal. 40 (2002) 1968–1992. | DOI | MR | Zbl

R.J. Leveque, Numerical Methods for Conservation Laws. Springer Science & Business Media, Berlin (1992). | DOI | MR | Zbl

M.L. Merriam, An Entropy-based Approach to Nonlinear Stability. Stanford University, Stanford, CA, USA (1989). | MR

C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2 (1986) 11–22. | DOI | MR | Zbl

M.S. Mock, Systems of conservation laws of mixed type. J. Differ. Equ. 37 (1980) 70–88. | DOI | MR | Zbl

G. Mühlbach, A recurrence formula for generalized divided differences and some applications. J. Approx. Theory 9 (1973) 165–172. | DOI | MR | Zbl

G. Mühlbach, The general neville-aitken-algorithm and some applications. Numer. Math. 31 (1978) 97–110. | DOI | MR | Zbl

F.J. Narcowich and J.D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69 (1992) 84–109. | DOI | MR | Zbl

D. Ray, P. Chandrashekar, U.S. Fjordholm and S. Mishra, Entropy stable scheme on two-dimensional unstructured grids for euler equations. Commun. Comput. Phys. 19 (2016) 1111–1140. | DOI | MR | Zbl

S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11 (1999) 193–210. | DOI | MR | Zbl

R. Schaback, Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3 (1995) 251–264. | DOI | MR | Zbl

R. Schaback, Native hilbert spaces for radial basis functions I. New Deve. Approx. Theory 132 (1998) 255–282. | MR | Zbl

R. Schaback, Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21 (2005) 293–317. | DOI | MR | Zbl

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. | DOI | MR | Zbl

E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49 (1987) 91–103. | DOI | MR | Zbl

B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method. J. Comput. Phys. 32 (1979) 101–136. | DOI | Zbl

H. Wendland, Scattered Data Approximation. Cambridge University Press, Cambridge (2004). | DOI | MR | Zbl

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173. | DOI | MR | Zbl

G.B. Wright and B. Fornberg, Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331 (2017) 137–156. | DOI | MR | Zbl

Cité par Sources :