Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1157-1190.

We consider a phenotype-structured model of evolutionary dynamics in a population of cancer cells exposed to the action of a cytotoxic drug. The model consists of a nonlocal parabolic equation governing the evolution of the cell population density function. We develop a novel method for constructing exact solutions to the model equation, which allows for a systematic investigation of the way in which the size and the phenotypic composition of the cell population change in response to variations of the drug dose and other evolutionary parameters. Moreover, we address numerical optimal control for a calibrated version of the model based on biological data from the existing literature, in order to identify the drug delivery schedule that makes it possible to minimise either the population size at the end of the treatment or the average population size during the course of treatment. The results obtained challenge the notion that traditional high-dose therapy represents a “one-fits-all solution” in anticancer therapy by showing that the continuous administration of a relatively low dose of the cytotoxic drug performs more closely to i.e. the optimal dosing regimen to minimise the average size of the cancer cell population during the course of treatment.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019010
Classification : 35K55, 35B09, 49J20, 92C50, 92D25
Mots-clés : cancer modelling, therapy optimisation, nonlocal parabolic equations, exact solutions, numerical optimal control
Almeida, Luís 1 ; Bagnerini, Patrizia 1 ; Fabrini, Giulia 1 ; Hughes, Barry D. 1 ; Lorenzi, Tommaso 1

1
@article{M2AN_2019__53_4_1157_0,
     author = {Almeida, Lu{\'\i}s and Bagnerini, Patrizia and Fabrini, Giulia and Hughes, Barry D. and Lorenzi, Tommaso},
     title = {Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1157--1190},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019010},
     zbl = {1442.35193},
     mrnumber = {3977080},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019010/}
}
TY  - JOUR
AU  - Almeida, Luís
AU  - Bagnerini, Patrizia
AU  - Fabrini, Giulia
AU  - Hughes, Barry D.
AU  - Lorenzi, Tommaso
TI  - Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1157
EP  - 1190
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019010/
DO  - 10.1051/m2an/2019010
LA  - en
ID  - M2AN_2019__53_4_1157_0
ER  - 
%0 Journal Article
%A Almeida, Luís
%A Bagnerini, Patrizia
%A Fabrini, Giulia
%A Hughes, Barry D.
%A Lorenzi, Tommaso
%T Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1157-1190
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019010/
%R 10.1051/m2an/2019010
%G en
%F M2AN_2019__53_4_1157_0
Almeida, Luís; Bagnerini, Patrizia; Fabrini, Giulia; Hughes, Barry D.; Lorenzi, Tommaso. Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1157-1190. doi : 10.1051/m2an/2019010. http://www.numdam.org/articles/10.1051/m2an/2019010/

[1] C.A. Aktipis, A.M. Boddy, R.A. Gatenby, J.S. Brown and C.C. Maley, Life history trade-offs in cancer evolution, Nat. Rev. Cancer 13 (2013) 883–892. | DOI

[2] N. André, M. Carré and E. Pasquier, Metronomics: towards personalized chemotherapy?, Nat. Rev. Clin. Oncol. 11 (2014) 413–431. | DOI

[3] C. Becker, J. Hagmann, J. Müller, D. Koenig, O. Stegle, K. Borgwardt and D. Weigel, Spontaneous epigenetic variation in the arabidopsis thaliana methylome, Nature 480 (2011) 245–249. | DOI

[4] S. Benzekry, E. Pasquier, D. Barbolosi, B. Lacarelle, F. Barlési, N. André and J. Ciccolini, Metronomic reloaded: theoretical models bringing chemotherapy into the era of precision medicine, Semin. Canc. Biol. 35 (2015) 53–61. | DOI

[5] I. Bozic, B. Allen and M.A. Nowak, Dynamics of targeted cancer therapy, Trends Mol. Med. 18 (2012) 311–316. | DOI

[6] R. Brown, E. Curry, L. Magnani, C.S. Wilhelm-Benartzi and J. Borley, Poised epigenetic states and acquired drug resistance in cancer, Nat. Rev. Cancer 14 (2014) 747–753. | DOI

[7] R.A. Burrell and C. Swanton, Tumour heterogeneity and the evolution of polyclonal drug resistance, Mol. Oncol. 8 (2014) 1095–1111. | DOI

[8] B.A. Chabner and T.G. Roberts Jr., Chemotherapy and the war on cancer, Nat. Rev. Cancer 5 (2005) 65–72. | DOI

[9] N. Champagnat, R. Ferrière and G. Ben Arous, The canonical equation of adaptive dynamics: a mathematical view, Selection 2 (2002) 73–83. | DOI

[10] N. Champagnat, R. Ferrière and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models, Theor. Popul. Biol. 69 (2006) 297–321. | DOI | Zbl

[11] R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Almeida, A. Escargueil and J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation, Cancer Res. 75 (2015) 930–939. | DOI

[12] R.H. Chisholm, T. Lorenzi and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation, Biochim. Biophys. Acta Gen. Subj. 1860 (2016) 2627–2645. | DOI

[13] R.H. Chisholm, T. Lorenzi, L. Desvillettes and B.D. Hughes, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Z. Angew. Math. Phys. 67 (2016) 1–34. | DOI | MR | Zbl

[14] I. Dagogo-Jack and A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nat. Rev. Clin. Oncol. 15 (2018) 81–94. | DOI

[15] E.C. De Bruin, T.B. Taylor and C. Swanton, Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications, Genome Med. 5 (2013) 101. | DOI

[16] R. De Souza, P. Zahedi, R.M. Badame, C. Allen and M. Piquette-Miller, Chemotherapy dosing schedule influences drug resistance development in ovarian cancer, Mol. Canc. Therapeut. 10 (2011) 1289–1299. | DOI

[17] M. Delitala and T. Lorenzi, A mathematical model for progression and heterogeneity in colorectal cancer dynamics, Theor. Popul. Biol. 79 (2011) 130–138. | DOI | Zbl

[18] M. Delitala and T. Lorenzi, A mathematical model for the dynamics of cancer hepatocytes under therapeutic actions, J. Theor. Biol. 297 (2012) 88–102. | DOI | MR | Zbl

[19] D.L. Dexter, H.M. Kowalski, B.A. Blazar, Z. Fligiel, R. Vogel and G.H. Heppner, Heterogeneity of tumor cells from a single mouse mammary tumor, Cancer Res. 38 (1978) 3174–3181.

[20] P.M. Enriquez-Navas, Y. Kam, T. Das, S. Hassan, A. Silva, P. Foroutan, E. Ruiz, G. Martinez, S. Minton, R.J. Gillies and R.A. Gatenby, Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer, Sci. Transl. Med. 8 (2016) 327ra24–327ra24.

[21] L. Euler, De integratione aequationum differentialium, Novi Commentarii Academiae Scientiarum Petropolitanae 8 (1763) 3–33.

[22] R.A. Gatenby, A change of strategy in the war on cancer, Nature 459 (2009) 508–509. | DOI

[23] R.A. Gatenby, A.S. Silva, R.J. Gillies and B.R. Frieden, Adaptive therapy, Cancer Res. 69 (2009) 4894–4903. | DOI

[24] M.M. Gottesman, Mechanisms of cancer drug resistance, Annu. Rev. Med. 53 (2002) 615–627. | DOI

[25] M. Greaves and C.C. Maley, Clonal evolution in cancer, Nature 481 (2012) 306–313. | DOI

[26] D. Hanahan and R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646–674. | DOI

[27] D. Hanahan, G. Bergers and E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clin. Investig. 105 (2000) 1045–1047. | DOI

[28] A. Hodgkinson, M.A. Chaplain, P. Domschke and D. Trucu, Computational approaches and analysis for a spatio-structural-temporal invasive carcinoma model, Bull. Math. Biol. 80 (2018) 701–737. | DOI | MR | Zbl

[29] C. Holohan, S. Van Schaeybroeck, D.B. Longley and P.G. Johnston, Cancer drug resistance: an evolving paradigm, Nat. Rev. Cancer 13 (2013) 714–726. | DOI

[30] S. Huang, Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells, Cancer Metastasis Rev. 32 (2013) 423–448. | DOI

[31] M.R. Junttila and F.J. De Sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature 501 (2013) 346–354. | DOI

[32] G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D.J. Hicklin, P. Bohlen and R.S. Kerbel, Continuous low-dose therapy with vinblastine and vegf receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clin. Investig. 105 (2000) R15–R24. | DOI

[33] K.S. Korolev, J.B. Xavier and J. Gore, Turning ecology and evolution against cancer, Nat. Rev. Cancer 14 (2014) 371–380. | DOI

[34] O. Lavi, J.M. Greene, D. Levy and M.M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Res. 73 (2013) 7168–7175. | DOI

[35] O. Lavi, J.M. Greene, D. Levy and M.M. Gottesman, Simplifying the complexity of resistance heterogeneity in metastasis, Trends Mol. Med. 20 (2014) 129–136. | DOI

[36] R.J. Leveque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, Society for Industrial and Applied Mathematics SIAM, Philadelphia (2007). | DOI | MR | Zbl

[37] T. Lorenzi, R.H. Chisholm, L. Desvillettes and B.D. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, i 386 (2015) 166–176. | MR | Zbl

[38] T. Lorenzi, R.H. Chisholm and J. Clairambault, Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations, Biol. Direct 11 (2016) 1–17. | DOI

[39] T. Lorenzi, C. Venkataraman, A. Lorz and M.A. Chaplain, The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity, J. Theor. Biol. 451 (2018) 101–110. | DOI | MR | Zbl

[40] A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault and B. Perthame, Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: M2AN 47 (2013) 377–399. | DOI | Numdam | MR | Zbl

[41] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol. 77 (2015) 1–22. | DOI | MR | Zbl

[42] J.P. Medema, Cancer stem cells: the challenges ahead, Nat. Cell Biol. 15 (2013) 338–344. | DOI

[43] L.M. Merlo, J.W. Pepper, B.J. Reid and C.C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer 6 (2006) 924–935. | DOI

[44] E. Moreno, Is cell competition relevant to cancer?, Nat. Rev. Cancer 8 (2008) 141–147. | DOI

[45] E. Munzone and M. Colleoni, Clinical overview of metronomic chemotherapy in breast cancer, Nat. Rev. Clin. Oncol. 12 (2015) 631–644. | DOI

[46] N.E. Navin, Cancer genomics: one cell at a time, Genome Biol. 15 (2014) 452. | DOI

[47] J. Nocedal and S. Wright, Numerical Optimization, Springer Science (1999). | DOI | MR | Zbl

[48] P.C. Nowell, The clonal evolution of tumor cell populations, Science 194 (1976) 23–28. | DOI

[49] H. Oey and E. Whitelaw, On the meaning of the word “epimutation”, Trends Genet. 30 (2014) 519–520. | DOI

[50] A. Olivier and C. Pouchol, Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer, J. Optim. Theor. Appl. (2018). | MR | Zbl

[51] J. Otwinowski and J.B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc. Natl. Acad. Sci. USA 111 (2014) E2301–E2309. | DOI

[52] B. Perthame, Transport equations in Biology, Birkhäuser, Basel (2006). | MR | Zbl

[53] K.J. Pienta, N. Mcgregor, R. Axelrod and D.E. Axelrod, Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments, Transl. Oncol. 1 (2008) 158–164. | DOI

[54] A. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: “what does not kill me strengthens me”, Br. J. Cancer 112 (2015) 1725–1732. | DOI

[55] A.O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson and S. Huang, Non-darwinian dynamics in therapy-induced cancer drug resistance, Nat. Commun. 4 (2013) 2467. | DOI

[56] C. Pouchol, J. Clairambault, A. Lorz and E. Trélat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, J. Math. Pures Appl. 116 (2017) 268–308. | DOI | MR | Zbl

[57] R. Salgia and P. Kulkarni, The genetic/non-genetic duality of drug “resistance” in cancer, Trends Cancer 4 (2018) 110–118. | DOI

[58] P. Savage, J. Stebbing, M. Bower and T. Crook, Why does cytotoxic chemotherapy cure only some cancers? Nat. Clin. Pract. Oncol. 6 (2009) 43–52. | DOI

[59] O.G. Scharovsky, L.E. Mainetti and V.R. Rozados, Metronomic chemotherapy: changing the paradigm that more is better, Curr. Oncol. 16 (2009) 7–15. | DOI

[60] H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Springer, New York (2015). | DOI | MR

[61] S.V. Sharma, D.Y. Lee, B. Li, M.P. Quinlan, F. Takahashi, S. Maheswaran, U. Mcdermott, N. Azizian, L. Zou, M.A. Fischbach and K.K. Wong, A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell 141 (2010) 69–80. | DOI

[62] R.T. Skeel, S.N. Khleif, Handbook of Cancer Chemotherapy, Lippincott Williams & Wilkins Handbook Series (2011).

[63] R.E.A. Stace, T. Stiehl, M.A.J. Chaplain, A. Marciniak-Czochra and T. Lorenzi, A phenotype-structured individual-based model for the evolution of cancer cell populations under chemotherapy. Preprint (2019).

[64] C. Sun, L. Wang, S. Huang, G.J. Heynen, A. Prahallad, C. Robert, J. Haanen, C. Blank, J. Wesseling, S.M. Willems and D. Zecchin, Reversible and adaptive resistance to braf (v600e) inhibition in melanoma, Nature 508 (2014) 118–122. | DOI

[65] Y. Tamori and W.-M. Deng, Cell competition and its implications for development and cancer, J. Genet. Genomics 38 (2011) 483–495. | DOI

[66] M.D. Thakur, F. Salangsang, A.S. Landman, W.R. Sellers, N.K. Pryer, M.P. Levesque, R. Dummer, M. Mcmahon and D.D. Stuart, Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance, Nature 494 (2013) 251–255. | DOI

[67] N.C. Turner and J.S. Reis-Filho, Genetic heterogeneity and cancer drug resistance, Lancet Oncol. 13 (2012) e178–e185. | DOI

[68] L. Wagstaff, G. Kolahgar and E. Piddini, Competitive cell interactions in cancer: a cellular tug of war, Trends Cell Biol. 23 (2013) 160–167. | DOI

Cité par Sources :