Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1005-1030.

In this paper, we study the performance of Full Waveform Inversion (FWI) from time-harmonic Cauchy data via conditional well-posedness driven iterative regularization. The Cauchy data can be obtained with dual sensors measuring the pressure and the normal velocity. We define a novel misfit functional which, adapted to the Cauchy data, allows the independent location of experimental and computational sources. The conditional well-posedness is obtained for a hierarchy of subspaces in which the inverse problem with partial data is Lipschitz stable. Here, these subspaces yield piecewise linear representations of the wave speed on given domain partitions. Domain partitions can be adaptively obtained through segmentation of the gradient. The domain partitions can be taken as a coarsening of an unstructured tetrahedral mesh associated with a finite element discretization of the Helmholtz equation. We illustrate the effectiveness of the iterative regularization through computational experiments with data in dimension three. In comparison with earlier work, the Cauchy data do not suffer from eigenfrequencies in the configurations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019009
Classification : 35R30, 86A22, 65N12, 35J25, 35Q86
Mots-clés : Inverse problems, Helmholtz equation, stability and convergence of numerical methods, reconstruction algorithm
Alessandrini, Giovanni 1 ; De Hoop, Maarten V. 1 ; Faucher, Florian 1 ; Gaburro, Romina 1 ; Sincich, Eva 1

1
@article{M2AN_2019__53_3_1005_0,
     author = {Alessandrini, Giovanni and De Hoop, Maarten V. and Faucher, Florian and Gaburro, Romina and Sincich, Eva},
     title = {Inverse problem for the {Helmholtz} equation with {Cauchy} data: reconstruction with conditional well-posedness driven iterative regularization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1005--1030},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019009},
     zbl = {1418.65164},
     mrnumber = {3973923},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019009/}
}
TY  - JOUR
AU  - Alessandrini, Giovanni
AU  - De Hoop, Maarten V.
AU  - Faucher, Florian
AU  - Gaburro, Romina
AU  - Sincich, Eva
TI  - Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1005
EP  - 1030
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019009/
DO  - 10.1051/m2an/2019009
LA  - en
ID  - M2AN_2019__53_3_1005_0
ER  - 
%0 Journal Article
%A Alessandrini, Giovanni
%A De Hoop, Maarten V.
%A Faucher, Florian
%A Gaburro, Romina
%A Sincich, Eva
%T Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1005-1030
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019009/
%R 10.1051/m2an/2019009
%G en
%F M2AN_2019__53_3_1005_0
Alessandrini, Giovanni; De Hoop, Maarten V.; Faucher, Florian; Gaburro, Romina; Sincich, Eva. Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1005-1030. doi : 10.1051/m2an/2019009. http://www.numdam.org/articles/10.1051/m2an/2019009/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier Science (2003). | MR | Zbl

[2] V. Akcelik, G. Biros and O. Ghattas, Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation, Supercomputing. In: ACM/IEEE 2002 Conference (2002) 41. | DOI

[3] G. Alessandrini, M.V. De Hoop, R. Gaburro and E. Sincich, Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data. Asympt. Anal. 108 (2018) 115–149. | MR | Zbl

[4] G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35 (2005) 207–241. | DOI | MR | Zbl

[5] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comp. 32 (2006) 136–156. | DOI | MR

[6] J.B. Bednar, C. Shin and S. Pyun, Comparison of waveform inversion, part 2: Phase approach. Geophys. Prospect. 55 (2007) 465–475. | DOI

[7] E. Beretta, M. De Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation. SIAM J. Math. Anal. 45 (2013) (2) 679–699. | DOI | MR | Zbl

[8] E. Bozdağ, J. Trampert and J. Tromp, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys. J. Int. 85 (2011) 845–870. | DOI

[9] R. Brossier, S. Operto and J. Virieux, Robust elastic frequency-domain full-waveform inversion using the L1 norm. Geophys. Res. Lett. 36 (2009) 20310. | DOI

[10] R. Brossier, S. Operto and J. Virieux, Which data residual norm for robust elastic frequency-domain full waveform inversion?. Geophysics 75 (2010) R37–R46. | DOI

[11] C. Bunks, F.M. Saleck, S. Zaleski and G. Chavent, Multiscale seismic waveform inversion. Geophysics 60 (1995) 1457–1473. | DOI

[12] F. Cakoni and D.L. Colton, A Qualitative Approach to Inverse Scattering Theory. Springer, Berlin, Heidelberg (2014). | DOI | MR | Zbl

[13] D. Carlson, W. Söllner, H. Tabti, E. Brox and M. Widmaier, Increased Resolution of Seismic Data from a Dual-sensor Streamer Cable, SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists (2007) 994–998. | DOI

[14] C.I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity. Preprint ArXiv:1611.03930 (2016). | MR

[15] G. Chavent, Identification of functional parameters in partial differential equations. Identification of parameters in distributed systems. In: Joint Automatic Control Conference (1974) 155–156. | MR

[16] G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-step Guide for Applications. Springer Science & Business Media, New York (2010). | DOI | MR | Zbl

[17] D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory. Inverse Probl. 21 (2005) 383–398. | DOI | MR | Zbl

[18] M. De Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Hölder stability and iterative reconstruction. Inverse Probl. 28 (2012) 045001. | DOI | MR | Zbl

[19] B. Engquist and A. Majda. Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74 (1977) 1765–1766. | DOI | MR | Zbl

[20] M. Ikehata, Reconstruction of the shape of the inclusion by boundary measurements. Commun. Part. Differ. Equ. 23 (1998) 1459–1474. | DOI | MR | Zbl

[21] B.L.N. Kennett, M.S. Sambridge, P.R. Williamson, Subspace methods for large inverse problems with multiple parameter classes. Geophys. J. Int. 94 (1988) 237–247. | DOI | Zbl

[22] M. Kern, Numerical Methods for Inverse Problems. John Wiley & Sons (2016). | DOI | MR

[23] P. Lailly, The seismic inverse problem as a sequence of before stack migrations. In: Conference on Inverse Scattering: Theory and Application, edited by J.B. Bednar. SIAM (1983) 206–220. | MR

[24] J.L. Lions and S.K. Mitter, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). | DOI | MR | Zbl

[25] Y. Lin, A. Abubakar and T.M. Habashy, Seismic full-waveform inversion using truncated wavelet representations. In: SEG Technical Program Expanded Abstracts 2012. Chapter 486 (2012) 1–6.

[26] I. Loris, H. Douma, G. Nolet, I. Daubechies and C. Regone, Nonlinear regularization techniques for seismic tomography. J. Comput. Phys. 229 (2010) 890–905. | DOI | MR | Zbl

[27] I. Loris, G. Nolet, I. Daubechies and F.A. Dahlen, Tomographic inversion using L1-norm regularization of wavelet coefficients. Geophys. J. Int. 170 (2007) 359–370. | DOI

[28] J. Nocedal and S. Wright, Numerical Optimization, 2nd edn. In: Springer Series in Operations Research (2006. | MR | Zbl

[29] G.S. Pan, R.A. Phinney and R.I. Odom, Full-waveform inversion of plane-wave seismograms in stratified acoustic media; theory and feasibility. Geophysics 53 (1988) 21–31. | DOI

[30] R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167 (2006) 495–503. | DOI

[31] R. Potthast, A survey on sampling and probe methods for inverse problems. Inverse Probl. 22 (2006) R1–R47. | DOI | MR | Zbl

[32] R.G. Pratt, Z.-M. Song, P. Williamson and M. Warner, Two-dimensional velocity models from wide-angle seismic data by wavefield inversion. Geophys. J. Int. 124 (1996) 323–340. | DOI

[33] R.G. Pratt and M.H. Worthington, Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method. Geophys. Prospect. 38 (1990) 287–310. | DOI

[34] G. Rønholt, J.E. Lie, O. Korsmo, B. Danielsen, S. Brandsberg-Dah, S. Brown, N. Chemingui, A. Valenciano Mavilio, D. Whitmore and R.D. Martinez, Broadband velocity model building and imaging using reflections, refractions and multiples from dual-sensor streamer data. In: 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society (2015) 1006–1009.

[35] J. Shi, M.V. De Hoop, E. Beretta, E. Francini and S. Vessella, Multi-parameter iterative reconstruction with the Neumann-to-Dirichlet map as the data. Submitted to Geophys. J. Int. (2017).

[36] S. Pyun, C. Shin and J.B. Bednar, Comparison of waveform inversion, part 3: Amplitude approach. Geophys. Prospect. 55 (2007) 477–485. | DOI

[37] C. Shin, S. Pyun and J.B. Bednar, Comparison of waveform inversion, part 1: Conventional wavefield vs logarithmic wavefield. Geophys. Prospect. 55 (2007) 449–464. | DOI

[38] A. Tarantola, Inversion of seismic reflection data in the acoustic approximation. Geophysics 49 (1984) 1259–1266. | DOI

[39] A. Tarantola, Inversion of travel times and seismic waveforms. Seismic Tomography. Springer. Dordrecht (1987) 135–157. | DOI

[40] R. Tenghamn, S. Vaage and C. Borresen, A Dual-sensor Towed Marine Streamer: Its Viable Implementation and Initial Results, SEG Technical Program Expanded Abstracts 2007. Society of Exploration Geophysicists (2007) 989–993.

[41] N.D. Whitmore, A.A. Valenciano, W. Sollner and S. Lu, Imaging of primaries and multiples using a dual-sensor towed streamer, SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists (2010) 3187–3192. | DOI

[42] R.-S. Wu, J. Luo and B. Wu, Seismic envelope inversion and modulation signal model. Geophysics 79 (2014) WA13–WA24. | DOI

[43] Y.O. Yuan and F.J. Simons, Multiscale adjoint waveform-difference tomography using wavelets. Geophysics 79 (2014) WA79–WA95. | DOI

[44] Y.O. Yuan, F.J. Simons and E. Bozdağ, Multiscale adjoint waveform tomography for surface and body waves. Geophysics 80 (2015) R281–R302. | DOI

Cité par Sources :