Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 301-324.

In this paper, we study a hybridizable discontinuous Galerkin (HDG) method for the Maxwell operator. The only global unknowns are defined on the inter-element boundaries, and the numerical solutions are obtained by using discontinuous polynomial approximations. The error analysis is based on a mixed curl-curl formulation for the Maxwell equations. Theoretical results are obtained under a more general regularity requirement. In particular for the low regularity case, special treatment is applied to approximate data on the boundary. The HDG method is shown to be stable and convergence in an optimal order for both high and low regularity cases. Numerical experiments with both smooth and singular analytical solutions are performed to verify the theoretical results.

DOI : 10.1051/m2an/2019007
Classification : 65N30
Mots-clés : Maxwell equations, HDG method, low regularity
Chen, Gang 1 ; Cui, Jintao 1 ; Xu, Liwei 1

1
@article{M2AN_2019__53_1_301_0,
     author = {Chen, Gang and Cui, Jintao and Xu, Liwei},
     title = {Analysis of a hybridizable discontinuous {Galerkin} method for the {Maxwell} operator},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {301--324},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2019007},
     zbl = {1416.78023},
     mrnumber = {3939591},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019007/}
}
TY  - JOUR
AU  - Chen, Gang
AU  - Cui, Jintao
AU  - Xu, Liwei
TI  - Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 301
EP  - 324
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019007/
DO  - 10.1051/m2an/2019007
LA  - en
ID  - M2AN_2019__53_1_301_0
ER  - 
%0 Journal Article
%A Chen, Gang
%A Cui, Jintao
%A Xu, Liwei
%T Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 301-324
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019007/
%R 10.1051/m2an/2019007
%G en
%F M2AN_2019__53_1_301_0
Chen, Gang; Cui, Jintao; Xu, Liwei. Analysis of a hybridizable discontinuous Galerkin method for the Maxwell operator. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 301-324. doi : 10.1051/m2an/2019007. http://www.numdam.org/articles/10.1051/m2an/2019007/

[1] A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. Am. Math. Soc. 68 (1999) 607–631. | DOI | MR | Zbl

[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | DOI | MR | Zbl

[3] S.C. Brenner, J. Cui, F. Li and L.-Y. Sung, A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem. Numer. Math. 109 (2008) 509–533. | DOI | MR | Zbl

[4] A. Buffa, M. Costabel and D. Sheen, On traces for H ( c u r l , Ω ) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | DOI | MR | Zbl

[5] H. Chen, W. Qiu and K. Shi, A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333 (2018) 287–310. | DOI | MR | Zbl

[6] H. Chen, W. Qiu, K. Shi and M. Solano, A superconvergent HDG method for the Maxwell equations. J. Sci. Comput. 70 (2017) 1010–1029. | DOI | MR | Zbl

[7] G.-H. Cheng, T.-Z. Huang and S.-Q. Shen, Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Comput. Phys. Commun. 180 (2009) 192–196. | DOI | MR | Zbl

[8] X. Feng, P. Lu and X. Xu, A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell equations with high wave number. Comput. Methods Appl. Math. 16 (2016) 429–445. | DOI | MR | Zbl

[9] X. Feng and H. Wu, An absolutely stable discontinuous Galerkin method for the indefinite time-harmonic Maxwell equations with large wave number. SIAM J. Numer. Anal. 52 (2014) 2356–2380. | DOI | MR | Zbl

[10] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. | DOI | MR | Zbl

[11] P. Grisvard, Singularities in boundary value problems. In Vol. 22 of Recherches en Mathématiques Appliquées. Masson, Paris (1992). | MR | Zbl

[12] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. | DOI | MR | Zbl

[13] R. Hiptmair, A. Moiola and I. Perugia, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21 (2011) 2263–2287. | DOI | MR | Zbl

[14] P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518. | DOI | MR | Zbl

[15] P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434–459. | DOI | MR | Zbl

[16] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | DOI | MR | Zbl

[17] B. Li, J. Wang and L. Xu, A convergencet linerized Lagrange finite element method for the magneto-hydrodynamic equations in 2D nonsmooth and nonconvex domains, Submmitted.

[18] P. Lu, H. Chen and W. Qiu, An absolutely stable #-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comp. 86 (2017) 1553–1577. | DOI | MR | Zbl

[19] P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | DOI | MR | Zbl

[20] J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl

[21] J.-C. Nédélec, A new family of mixed finite elements in #. Numer. Math. 50 (1986) 57–81. | DOI | MR | Zbl

[22] N.C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230 (2011) 7151–7175. | DOI | MR | Zbl

[23] I. Perugia and D. Schötzau, The h p -local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179–1214. | DOI | MR | Zbl

[24] I. Perugia, D. Schötzau and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191 (2002) 4675–4697. | DOI | MR | Zbl

[25] S.-L. Wu, T.-Z. Huang and C.-X. Li, Modified block preconditioners for the discretized time-harmonic Maxwell equations in mixed form. J. Comput. Appl. Math. 237 (2013) 419–431. | DOI | MR | Zbl

[26] P. Yang, S. Yang and M. Li, An initial-boundary value problem for the Maxwell equations. J. Differ. Equ. 249 (2010) 3003–3023. | DOI | MR | Zbl

[27] L. Zhong, S. Shu, G. Wittum and J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27 (2009) 563–572. | DOI | MR | Zbl

[28] L. Zhu, T.-Z. Huang and L. Li, A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68 (2017) 109–116. | DOI | MR | Zbl

Cité par Sources :