Algebraic flux correction schemes preserving the eigenvalue range of symmetric tensor fields
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 833-867.

This work extends the algebraic flux correction (AFC) paradigm to finite element discretizations of conservation laws for symmetric tensor fields. The proposed algorithms are designed to enforce discrete maximum principles and preserve the eigenvalue range of evolving tensors. To that end, a continuous Galerkin approximation is modified by adding a linear artificial diffusion operator and a nonlinear antidiffusive correction. The latter is decomposed into edge-based fluxes and constrained to prevent violations of local bounds for the minimal and maximal eigenvalues. In contrast to the flux-corrected transport (FCT) algorithm developed previously by the author and existing slope limiting techniques for stress tensors, the admissible eigenvalue range is defined implicitly and the limited antidiffusive terms are incorporated into the residual of the nonlinear system. In addition to scalar limiters that use a common correction factor for all components of a tensor-valued antidiffusive flux, tensor limiters are designed using spectral decompositions. The new limiter functions are analyzed using tensorial extensions of the existing AFC theory for scalar convection-diffusion equations. The proposed methodology is backed by rigorous proofs of eigenvalue range preservation and Lipschitz continuity. Convergence of pseudo time-stepping methods to stationary solutions is demonstrated in numerical studies.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019006
Classification : 65N12, 65N30
Mots-clés : Advection of tensor fields, continuous Galerkin method, algebraic flux correction, artificial diffusion, discrete maximum principles
Lohmann, Christoph 1

1
@article{M2AN_2019__53_3_833_0,
     author = {Lohmann, Christoph},
     title = {Algebraic flux correction schemes preserving the eigenvalue range of symmetric tensor fields},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {833--867},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019006},
     mrnumber = {3973922},
     zbl = {1433.65258},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019006/}
}
TY  - JOUR
AU  - Lohmann, Christoph
TI  - Algebraic flux correction schemes preserving the eigenvalue range of symmetric tensor fields
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 833
EP  - 867
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019006/
DO  - 10.1051/m2an/2019006
LA  - en
ID  - M2AN_2019__53_3_833_0
ER  - 
%0 Journal Article
%A Lohmann, Christoph
%T Algebraic flux correction schemes preserving the eigenvalue range of symmetric tensor fields
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 833-867
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019006/
%R 10.1051/m2an/2019006
%G en
%F M2AN_2019__53_3_833_0
Lohmann, Christoph. Algebraic flux correction schemes preserving the eigenvalue range of symmetric tensor fields. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 833-867. doi : 10.1051/m2an/2019006. http://www.numdam.org/articles/10.1051/m2an/2019006/

[1] S.G. Advani and C.L. Tucker, Iii, The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31 (1987) 751–784. | DOI

[2] M.C. Altan and L. Tang, Orientation tensors in simple flows of dilute suspensions of non-Brownian rigid ellipsoids, comparison of analytical and approximate solutions. Rheologica Acta 32 (1993) 227–244. | DOI

[3] S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization. Comput. Methods Appl. Mech. Eng. 313 (2017) 133–158. | DOI | MR | Zbl

[4] G.R. Barrenechea, E. Burman and F. Karakatsani, Edge-based nonlinear diffusion for finite element approximations of convection.diffusion equations and its relation to algebraic flux-correction schemes. Numer. Math. 135 (2017) 521–545. | DOI | MR | Zbl

[5] G.R. Barrenechea, V. John and P. Knobloch, Analysis of algebraic flux correction schemes. SIAM J. Numer. Anal. 54 (2016) 2427–2451. | DOI | MR | Zbl

[6] G.R. Barrenechea, V. John and P. Knobloch, An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math. Models Methods Appl. Sci. 27 (2017) 525–548. | DOI | MR | Zbl

[7] G.R. Barrenechea, V. John, P. Knobloch and R. Rankin, A unified analysis of algebraic flux correction schemes for convection-diffusion equations. WIAS Preprint No. 2475 (2018). | DOI | Zbl

[8] J. Boris and D. Book, I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11 (1973) 38–69. | DOI | Zbl

[9] B. Burgeth, A. Bruhn, S. Didas, J. Weickert and M. Welk, Morphology for matrix data: Ordering versus pde-based approach. Image Vis. Comput. 25 (2007) 496–511. | DOI

[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (2015). | MR | Zbl

[11] M. Hubbard, Non-oscillatory third order fluctuation splitting schemes for steady scalar conservation laws. J. Comput. Phys. 222 (2007) 740–768. | DOI | MR | Zbl

[12] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I.A review. Comput. Methods Appl. Mech. Eng. 196 (2007) 2197–2215. | DOI | MR | Zbl

[13] M. Klíma, M. Kuchařík, M. Shashkov and J. Velechovský, Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics. Technical report, Los Alamos National Laboratory (LANL), LA-UR-17-20068. In: Proceedings of XVI International Conference on Hyperbolic Problems Theory, Numerics and Applications, Aachen (Germany), Aug. 1–5, 2016 (2017).

[14] P. Knobloch, Numerical solution of convection–diffusion equations using a nonlinear method of upwind type. J. Sci. Comput. 43 (2010) 454–470. | DOI | MR | Zbl

[15] D. Kuzmin, Algebraic flux correction for finite element discretizations of coupled systems. In: Computational Methods for Coupled Problems in Science and Engineering II, CIMNE, Barcelona (2007) 653–656.

[16] D. Kuzmin, Scalar conservation laws, edited by D. Kuzmin, R. Löhner and S. Turek. In: Flux-Corrected Transport, Scientific Computation. Springer, The Netherlands (2012) 145–192.

[17] D. Kuzmin, S. Basting and J.N. Shadid, Linearity-preserving monotone local projection stabilization schemes for continuous finite elements. Comput. Methods Appl. Mech. Eng. 322 (2017) 23–41. | DOI | MR | Zbl

[18] K. Lipnikov, M. Shashkov, D. Svyatskiy and Y. Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227 (2007) 492–512. | DOI | MR | Zbl

[19] C. Lohmann, Flux-corrected transport algorithms preserving the eigenvalue range of symmetric tensor quantities. J. Comput. Phys. 350 (2017) 907–926. | DOI | MR | Zbl

[20] K. Löwner, Über monotone Matrixfunktionen. Math. Z. 38 (1934) 177–216. | DOI | JFM | MR | Zbl

[21] G. Luttwak, On the Extension of Monotonicity to Multi-Dimensional Flows (2016).

[22] G. Luttwak and J. Falcovitz, Vector image polygon (VIP) limiters in ALE hydrodynamics. In Vol. 10 of EPJ Web of Conferences. EDP Sciences (2010) 00020. | DOI

[23] G. Luttwak and J. Falcovitz, Slope limiting for vectors: A novel vector limiting algorithm. Int. J. Numer. Methods Fluids 65 (2011) 1365–1375. | DOI | MR | Zbl

[24] P.-H. Maire, R. Abgrall, J. Breil, R. Loubère and B. Rebourcet, A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. J. Comput. Phys. 235 (2013) 626–665. | DOI | MR | Zbl

[25] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations. Springer Science & Business Media, New York (2012). | Zbl

[26] S.K. Sambasivan, M.J. Shashkov and D.E. Burton, Exploration of new limiter schemes for stress tensors in lagrangian and ALE hydrocodes. Comput. Fluids 83 (2013) 98–114. | DOI | MR | Zbl

[27] Y.-T. Shih and H.C. Elman, Modified streamline diffusion schemes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 174 (1999) 137–151. | DOI | MR | Zbl

[28] M. Stynes and L. Tobiska, Necessary L2-uniform convergence conditions for difference schemes for two-dimensional convection-diffusion problems. Comput. Math. Appl. 29 (1995) 45–53. | DOI | MR | Zbl

[29] R. Temam, Navier-Stokes Equations. Vol. 2. North-Holland Amsterdam (1984). | MR | Zbl

[30] P. Wesseling, Partial Differential Equations: Analytic Aspects. Springer Berlin Heidelberg, Berlin, Heidelberg (2001) 53–80.

[31] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press Inc., New York, NY, USA (1988). | MR | Zbl

[32] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31 (1979) 335–362. | DOI | MR | Zbl

Cité par Sources :