A positivity-preserving central-upwind scheme for isentropic two-phase flows through deviated pipes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1433-1457.

Directional drilling in oil and gas extraction can encounter difficulties such as accumulation of solids in deviated pipes. Motivated by such phenomenon, we consider a model for isentropic two-phase flows through deviated pipes. The system of partial differential equations is aimed at simulating the dynamics between a particle bed and a gas phase. The pipe can be either horizontal or vertically deviated where the effects of gravity are incorporated. Furthermore, the acceleration or deceleration due to friction between phases is investigated and spectral properties of the hyperbolic system of balance laws are described. The existence and characterization of steady states under appropriate conditions is analyzed. A new type of steady states arises when a balance between gas and solid phases results in a non-uniform solid particle bed and vanishing solid velocity. This state corresponds to an accumulation of sedimented solids. A central-upwind scheme that preserves the positivity of the gas and solid densities and volume fractions is presented. Including an application of the model to an analysis of accumulation of solids, a variety of numerical tests is presented to show the merits of the scheme.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019003
Classification : 35L65, 65M08, 76T25
Mots-clés : Multiphase compressible flow, Riemann problems, Source terms, central-upwind schemes
Hernandez-Duenas, Gerardo 1 ; Velasco-García, Ulises 1 ; Velasco-Hernández, Jorge X. 1

1
@article{M2AN_2019__53_5_1433_0,
     author = {Hernandez-Duenas, Gerardo and Velasco-Garc{\'\i}a, Ulises and Velasco-Hern\'andez, Jorge X.},
     title = {A positivity-preserving central-upwind scheme for isentropic two-phase flows through deviated pipes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1433--1457},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019003},
     zbl = {1431.35088},
     mrnumber = {3982968},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019003/}
}
TY  - JOUR
AU  - Hernandez-Duenas, Gerardo
AU  - Velasco-García, Ulises
AU  - Velasco-Hernández, Jorge X.
TI  - A positivity-preserving central-upwind scheme for isentropic two-phase flows through deviated pipes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1433
EP  - 1457
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019003/
DO  - 10.1051/m2an/2019003
LA  - en
ID  - M2AN_2019__53_5_1433_0
ER  - 
%0 Journal Article
%A Hernandez-Duenas, Gerardo
%A Velasco-García, Ulises
%A Velasco-Hernández, Jorge X.
%T A positivity-preserving central-upwind scheme for isentropic two-phase flows through deviated pipes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1433-1457
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019003/
%R 10.1051/m2an/2019003
%G en
%F M2AN_2019__53_5_1433_0
Hernandez-Duenas, Gerardo; Velasco-García, Ulises; Velasco-Hernández, Jorge X. A positivity-preserving central-upwind scheme for isentropic two-phase flows through deviated pipes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1433-1457. doi : 10.1051/m2an/2019003. http://www.numdam.org/articles/10.1051/m2an/2019003/

R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. | DOI | MR | Zbl

N. Andrianov and G. Warnecke, On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64 (2004) 878–901. | DOI | MR | Zbl

M.E. Chenevert, A.T. Bourgoyne, K.K. Millheim and F.S. Young, Applied drilling engineering, 48th edition. In: Society of Petroleum Engineers (1991).

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170 (1992) 414–432. | DOI | MR | Zbl

L. Combe and J.M. Hérard, A finite volume algorithm to compute dense compressible gas-solid flows. AIAA Journal 37 (1997) 337–345. | DOI

F. Coquel, J.M. Hérard and K. Saleh, A splitting method for the isentropic Baer-Nunziato two-phase flow model. In: CEMRACS’11: Multiscale Coupling of Complex Models in Scientific Computing In Vol. 38 of ESAIM Proc. EDP Sciences, Les Ulis (2012) 241–256. | MR | Zbl

F. Coquel, J.M. Hérard, K. Saleh and N. Seguin, A class of two-fluid two-phase flow modelsIn: 42nd AIAA Fluid Dynamics Conference and Exhibit (2012) 3356.

F. Coquel, J.M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: M2AN 48 (2014) 165–206. | DOI | Numdam | MR | Zbl

D.H. Cuong and M.D. Thanh, Constructing a Godunov-type scheme for the model of a general fluid flow in a nozzle with variable cross-section, Appl. Math. Comput. 305 (2017) 136–160. | MR | Zbl

G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Contin. Mech. Thermodyn. 4 (1992) 279–312. | DOI | MR | Zbl

F.O. Farah, Directional well design, trajectory and survey calculations, with a case study in Fiale, Asal rift, Djibouti. Report 27, United Nations University, Geothermal Training Programe (2014).

T. Flåtten, U.J.F. Aarsnes and O.M. Aamo, Review of two-phase flow models for control and estimation. Annu. Rev. in Control 42 (2016) 50–62. | DOI

J.R. Garca-Cascales, J. Mulas-Pérez and H. Paillère, Extension of some numerical schemes to the analysis of gas and particle mixtures. Int. J. Numer. Methods Fluids 56 (2008) 845–875. | DOI | MR | Zbl

P. Garca-Navarro and M.E. Vazquez-Cendon, On numerical treatment of the source in the shallow water equations. Comput. Fluids 29 (2000) 951–979. | DOI | Zbl

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18 (1965) 697–715. | DOI | MR | Zbl

S. Gottlieb, C.W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | DOI | MR | Zbl

G. Hernandez-Duenas, A hybrid method to solve shallow water flows with horizontal density gradients. J. Sci. Comput. 73 (2017) 753–782. | DOI | MR | Zbl

S. Karni, Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17 (1996) 1019–1039. | DOI | MR | Zbl

A. Kurganov, M. Prugger and T. Wu, Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39 (2017) A947–A965. | DOI | MR | Zbl

A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. | DOI | MR | Zbl

A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31 (2009) 1742–1773. | DOI | MR | Zbl

A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. | DOI | MR | Zbl

R.E. Lárez-Vázquez, Desarrollo de un modelo mecanístico para predecir la eficiencia de impieza de arena con tubería flexible en pozos inclinados. Master’s thesis, Universidad Autónoma de México (2005).

P.G. Lefloch, Hyperbolic systems of conservation laws: The theory of classical and nonclassical shock waves. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). | MR | Zbl

P.G. Lefloch, Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Differ. Equ. 1 (2004) 643–689. | DOI | MR | Zbl

R.J. Leveque, Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1990). | MR | Zbl

C.A. Lowe, Two-phase shock-tube problems and numerical methods of solution. J. Comput. Phys. 204 (2005) 598–632. | DOI | MR | Zbl

J.W. Nunziato and M.R. Baer, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl

T. Nazari, G. Hareland and J.J. Azar, Review of cuttings transport in directional well drilling: Systematic approach. SPE Western Regional Meeting, 27-29 May, Anaheim, California, USA (2010). | DOI

I. Orozco-Castillo, Modelo hidráulico para el transporte de sólidos en pozos altamente desviados. Master’s thesis, Facultad de Ingeniería UNAM (2014).

C. Parés, Numerical methods for nonconservative hyperbolic systems: A theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. | DOI | MR | Zbl

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. | DOI | MR | Zbl

J. Sanchez-Martinez, Modelo hidráulico para la planeación de la perforación de pozos de alcance extendido en la cuenca terciaria de veracruz. Master’s thesis, Facultad de Ingeniería UNAM (2007).

D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. | DOI | MR | Zbl

D. Serre, Systèmes de lois de conservation. I. Fondations. [Foundations]. Hyperbolicité, entropies, ondes de choc [Hyperbolicity, entropies, shock waves]. Diderot Editeur, Paris (1996). | MR | Zbl

M.D. Thanh, Exact solutions of a two-fluid model of two-phase compressible flows with gravity. Nonlinear Anal. Real World Appl. 13 (2012) 987–998. | DOI | MR | Zbl

M.D. Thanh, Building fast well-balanced two-stage numerical schemes for a model of two-phase flows. Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 1836–1858. | DOI | MR | Zbl

M.D. Thanh, A phase decomposition approach and the Riemann problem for a model of two-phase flows. J. Math. Anal. Appl. 418 (2014) 569–594. | DOI | MR | Zbl

M.D. Thanh, Well-balanced Roe-type numerical scheme for a model of two-phase compressible flows. J. Korean Math. Soc. 51 (2014) 163–187. | DOI | MR | Zbl

M.D. Thanh and D.H. Cuong, Existence of solutions to the Riemann problem for a model of two-phase flows. Electron. J. Differ. Equ. (2015) 32–18. | MR | Zbl

M.D. Thanh, D. Kröner and C. Chalons, A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Appl. Math. Comput. 219 (2012) 320–344. | MR | Zbl

M.D. Thanh, D. Kröner and N.T. Nam, Numerical approximation for a Baer-Nunziato model of two-phase flows. Appl. Numer. Math. 61 (2011) 702–721. | DOI | MR | Zbl

P.H. Tomren, A.W. Iyoho and J.J. Azar, Experimental study of cuttings transport in directional wells. In: Society of Petroleum Engineers, Drilling Engineering (1986).

B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary {of J. Comput. Phys.}. J. Comput. Phys. 32 (1979) 101–136. J. Comput. Phys. 135 (1997) 227–248. | DOI | MR | Zbl

Cité par Sources :