Towards a new friction model for shallow water equations through an interactive viscous layer
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 269-299.

The derivation of shallow water models from Navier–Stokes equations is revisited yielding a class of two-layer shallow water models. An improved velocity profile is proposed, based on the superposition of an inviscid fluid and a viscous layer inspired by the Interactive Boundary Layer interaction used in aeronautics. This leads to a new friction law which depends not only on velocity and depth but also on the variations of velocity and thickness of the viscous layer. The resulting system is an extended shallow water model consisting of three depth-integrated equations: the first two are mass and momentum conservation in which a slight correction on hydrostatic pressure has been made; the third one, known as von Kármán equation, describes the evolution of the viscous layer. This coupled model is shown to be conditionally hyperbolic, and a Godunov-type finite volume scheme is also proposed. Several numerical examples are provided and compared to the Multi-Layer Saint-Venant model. They emphasize the ability of the model to deal with unsteady viscous effects. They illustrate also the phase-lag between friction and topography, and even recover possible reverse flows.

DOI : 10.1051/m2an/2018076
Classification : 35L60, 35L65, 35Q35, 65M08, 76N17
Mots-clés : Shallow water, viscous layer, friction law, Prandtl equation, von Kármán equation
James, François 1 ; Lagrée, Pierre-Yves 1 ; Le, Minh H. 1 ; Legrand, Mathilde 1

1
@article{M2AN_2019__53_1_269_0,
     author = {James, Fran\c{c}ois and Lagr\'ee, Pierre-Yves and Le, Minh H. and Legrand, Mathilde},
     title = {Towards a new friction model for shallow water equations through an interactive viscous layer},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {269--299},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018076},
     zbl = {1426.35151},
     mrnumber = {3938846},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018076/}
}
TY  - JOUR
AU  - James, François
AU  - Lagrée, Pierre-Yves
AU  - Le, Minh H.
AU  - Legrand, Mathilde
TI  - Towards a new friction model for shallow water equations through an interactive viscous layer
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 269
EP  - 299
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018076/
DO  - 10.1051/m2an/2018076
LA  - en
ID  - M2AN_2019__53_1_269_0
ER  - 
%0 Journal Article
%A James, François
%A Lagrée, Pierre-Yves
%A Le, Minh H.
%A Legrand, Mathilde
%T Towards a new friction model for shallow water equations through an interactive viscous layer
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 269-299
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018076/
%R 10.1051/m2an/2018076
%G en
%F M2AN_2019__53_1_269_0
James, François; Lagrée, Pierre-Yves; Le, Minh H.; Legrand, Mathilde. Towards a new friction model for shallow water equations through an interactive viscous layer. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 269-299. doi : 10.1051/m2an/2018076. http://www.numdam.org/articles/10.1051/m2an/2018076/

[1] Vol’Pert F. Alcrudo and F. Benkhaldoun, Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Comput. Fluids 30 (2001) 643–671. | DOI | MR | Zbl

[2] E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. | DOI | Numdam | MR | Zbl

[3] J. Best, The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. Earth Surf. 110 (2005) F4. | DOI

[4] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics Birkhäuser Verlag Basel 2004 (2004). | DOI | MR | Zbl

[5] F. Bouchut, J. Le Sommer and V. Zeitlin, Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations. J. Fluid Mech. 514 (2004) 35–63. | DOI | MR | Zbl

[6] J. Burguete and P. Garcìa-Navarro, Implicit schemes with large time step for non-linear equations: application to river flow hydraulics. Int. J. Numer. Meth. Fluids 46 (2004) 607–636. | DOI | Zbl

[7] V. Caleffi, A. Valiani and A. Zanni, Finite volume method for simulating extreme flood events in natural channels, J. Hydraul. Res. 41 (2003) 167–177. | DOI

[8] M.J.C. Diaz, E.D. Fernández-Nieto and A.M. Ferreiro, Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. Comput. Fluids 37 (2008) 299–316. | DOI | MR | Zbl

[9] T. Cebeci and H.B. Keller, Shooting and parallel shooting methods for solving the falkner-skan boundary-layer equation. J. Comput. Phys. 7 (1971) 289–300. | DOI | Zbl

[10] F. Charru, B. Andreotti and P. Claudin, Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (2013) 469–493. | DOI | MR | Zbl

[11] V.T. Chow, Open-Channel Hydraulics. McGraw-Hill, New York, NY (1959).

[12] A.J.-C. De Saint Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. 73 (1871) 147–154. | JFM

[13] G. Dal Maso, P. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

[14] O. Delestre, S. Cordier, F. James and F. Darboux, Simulation of rain-water overland-flow. In: Proceedings of the 12th International Conference on Hyperbolic Problems. University of Maryland, College Park (USA) (2008). | Zbl

[15] E. Tadmor, J.-G. Liu and A. Tzavaras Eds., Proceedings of symposia in applied mathematics. Amer. Math. Soc. 67 (2009) 537–546.

[16] A. Doré, P. Bonneton, V. Marieu and T. Garlan, Numerical modeling of subaqueous sand dune morphodynamics. J. Geophys. Res. Earth Surf. 121 (2016) 565–587. | DOI

[17] A. Ellis and A. Fowler, On an evolution equation for sand dunes. SIAM J. Appl. Math. (2010).

[18] M. Esteves, X. Faucher, S. Galle and M. Vauclin, Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. J. Hydrol. 228 (2000) 265–282. | DOI

[19] F.M. Exner, Uber die wechselwirkung zwischen wasser und geschiebe in flussen. Akad. Wiss. Wien Math. Naturwiss. Klasse 134 (1925) 165–204.

[20] V. Falkner and S.W. Skan, Solutions of the boundary-layer equations. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 12 (1931) 865–896. | JFM | Zbl

[21] A. Fowler, Dunes and drumlins. In: Geomorphological Fluid Mechanics. Springer, Berlin (2001) 430–454. | DOI | Zbl

[22] D.L. George, Finite volume methods and adaptive refinement for tsunami propagation and inundation. Ph.D. thesis, University of Washington (2006). | MR

[23] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. | MR | Zbl

[24] A. Ghigo, J.-M. Fullana and P.-Y. Lagrée, A 2D nonlinear multiring model for blood flow in large elastic arteries. J. Comput. Phys. 350 (2017) 136–165. | DOI | MR | Zbl

[25] E. Godlewski, P.-A. Raviart, Numerical approximations of hyperbolic systems of conservation laws. Applied Mathematical Sciences Springer-Verlag, New York, NY 118 (1996). | DOI | MR | Zbl

[26] N. Goutal, M.-H. Le, P. Ung, A Godunov-type scheme for shallow water equations dedicated to simulations of overland flows on steep slopes. In: International Conference on Finite Volumes for Complex Applications, Springer, Berlin (2017) 275–283. | MR | Zbl

[27] N. Goutal and F. Maurel, Proceedings of the 2nd workshop on dam-break wave simulation. Technical Report, EDF-DER (1997).

[28] R.S. Govindaraju, Modeling overland flow contamination by chemicals mixed in shallow soil horizons under variable source area hydrology. Water Resour. Res. 32 (1996) 753–758. | DOI

[29] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | DOI | MR | Zbl

[30] A.J. Hogg and D. Pritchard, The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 501 (2004) 179–212. | DOI | MR | Zbl

[31] R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997). | DOI | MR | Zbl

[32] S. Kalliadasis, C. Ruyer-Quil, B. Scheid and M.G. Velarde, Falling Liquid Films. Springer Science & Business Media 176 (2011). | MR | Zbl

[33] J.F. Kennedy, The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16 (1963) 521–544. | DOI | Zbl

[34] M.M. Keshtkar and M. Ezatabadi, Numerical solution for the falkner–skan boundary layer viscous flow over a wedge. Int. J. Eng. Sci. Technol. 3 (2013) 18–36.

[35] D.-H. Kim, Y.-S. Cho and Y.-K. Yim, Propagation and run-up of nearshore tsunamis with hllc approximate riemann solver. Ocean Eng. 34 (2007) 1164–1173. | DOI

[36] G. Kirstetter, J. Hu, O. Delestre, F. Darboux, P.-Y. Lagrée, S. Popinet, J.M. Fullana and C. Josserand, Modeling rain-driven overland flow: empirical versus analytical friction terms in the shallow water approximation. J. Hydrol. 536 (2016) 1–9. | DOI

[37] K.K.J. Kouakou and P.-Y. Lagrée, Evolution of a model dune in a shear flow. Eur. J. Mech.-B/Fluids 25 (2006) 348–359. | DOI | MR | Zbl

[38] P.-Y. Lagrée, A triple deck model of ripple formation and evolution. Phys. Fluids 15 (2003) 2355–2368. | DOI | MR | Zbl

[39] P.-Y. Lagrée, Interactive boundary layer (IBL). In: Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. Springer, Berlin (2010) 247–286. | MR | Zbl

[40] P.-Y. Lagrée, E. Berger, M. Deverge, C. Vilain and A. Hirschberg, Characterization of the pressure drop in a 2D symmetrical pipe: some asymptotical, numerical, and experimental comparisons. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 85 (2005) 141–146. | DOI | Zbl

[41] P.-Y. Lagrée and S. Lorthois, The RNS/Prandtl equations and their link with other asymptotic descriptions: application to the wall shear stress scaling in a constricted pipe. Int. J. Eng. Sci. 43 (2005) 352–378. | DOI | MR | Zbl

[42] P.-Y. Lagrée, A. Van Hirtum and X. Pelorson, Asymmetrical effects in a 2D stenosis. Eur. J. Mech.-B/Fluids 26 (2007) 83–92. | DOI | MR | Zbl

[43] M.-H. Le, S. Cordier, C. Lucas and O. Cerdan, A faster numerical scheme for a coupled system modeling soil erosion and sediment transport. Water Resour. Res. 51 (2015) 987–1005. | DOI

[44] M.-R. Muñoz-Ruiz and C. Parés, Godunov method for nonconservative hyperbolic systems. ESAIM: M2AN 41 (2007) 169–185. | DOI | Numdam | MR | Zbl

[45] M. Nabi, H. Vriend, E. Mosselman, C. Sloff and Y. Shimizu, Detailed simulation of morphodynamics: 3. Ripples and dunes. Water Resour. Res. 49 (2013) 5930–5943. | DOI

[46] S. Naqshband, O. Duin, J. Ribberink and S. Hulscher, Modeling river dune development and dune transition to upper stage plane bed. Earth Surf. Process. Landf. 15 (2015) 323–335.

[47] R. Nickalls, 95.60 a new bound for polynomials when all the roots are real. Math. Gazette 95 (2011) 520–526. | DOI

[48] A.J. Paarlberg, C.M. Dohmen-Janssen, S.J. Hulscher and P. Termes, Modeling river dune evolution using a parameterization of flow separation. J. Geophys. Res. Earth Surf. 114 (2009) F1. | DOI

[49] S. Popinet, Quadtree-adaptative tsunami modelling. Ocean Dyn. 61 (2011) 1261–1285. | DOI

[50] L. Prandtl, Motion of fluids with very little viscosity. NACA Transl. 452 (1928) 1–8.

[51] G.L. Richard and S.L. Gavrilyuk, A new model of roll waves: comparison with brock’s experiments. J. Fluid Mech. 698 (2012) 374–405. | DOI | MR | Zbl

[52] J. Rivlin (Byk) and R. Wallach, An analytical solution for the lateral transport of dissolved chemicals in overland flow. Water Resour. Res. 31 (1995) 1031–1040. | DOI

[53] H. Schlichting, Boundary-layer Theory. McGraw-Hill, New York, NY (1968). | Zbl

[54] K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid. Quart. J. Mech. Appl. Math. 4 (1951) 182–198. | DOI | MR | Zbl

[55] K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid. II. Quart. J. Mech. Appl. Math. 26 (1973) 143–152. | DOI | Zbl

[56] L. Tatard, O. Planchon, J. Wainwright, G. Nord, D. Favis-Mortlock, N. Silvera, O. Ribolzi, M. Esteves and C.-H. Huang, Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. J. Hydrol. 348 (2008) 1–12. | DOI

[57] A. Valiani, V. Caleffi and A. Zanni, Case study: malpasset dam-break simulation using a two-dimensional finite volume methods. J. Hydraul. Eng. 128 (2002) 460–472. | DOI

[58] M. Van Dyke, Perturbation Methods in Fluid Mechanics. Parabolic Press, Incorporated, Hackensack, NY (1975). | MR | Zbl

[59] A.I. Vol’Pert, The spaces BV and quasilinear equations. Matematicheskii Sbornik 115 (1967) 255–302. | Zbl

[60] J. Zhang and B. Chen, An iterative method for solving the falkner–skan equation. Appl. Math. Comput. 210 (2009) 215–222. | MR | Zbl

Cité par Sources :