Phase-field modelling and computing for a large number of phases
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 805-832.

We propose a framework to represent a partition that evolves under mean curvature flows and volume constraints. Its principle follows a phase-field representation for each region of the partition, as well as classical Allen–Cahn equations for its evolution. We focus on the evolution and on the optimization of problems involving high resolution data with many regions in the partition. In this context, standard phase-field approaches require a lot of memory (one image per region) and computation timings increase at least as fast as the number of regions. We propose a more efficient storage strategy with a dedicated multi-image representation that retains only significant phase field values at each discretization point. We show that this strategy alone is unfortunately inefficient with classical phase field models. This is due to non local terms and low convergence rate. We therefore introduce and analyze an improved phase field model that localizes each phase field around its associated region, and which fully benefits of our storage strategy. To demonstrate the efficiency of the new multiphase field framework, we apply it to the famous 3D honeycomb problem and the conjecture of Weaire–Phelan’s tiling.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018075
Classification : 49Q05, 49Q20, 49M25
Mots-clés : Phase-field model, multiphase perimeter, kelvin conjecture
Bretin, Élie 1 ; Denis, Roland 1 ; Lachaud, Jacques-Olivier 1 ; Oudet, Édouard 1

1
@article{M2AN_2019__53_3_805_0,
     author = {Bretin, \'Elie and Denis, Roland and Lachaud, Jacques-Olivier and Oudet, \'Edouard},
     title = {Phase-field modelling and computing for a large number of phases},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {805--832},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2018075},
     zbl = {1421.49025},
     mrnumber = {3961089},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018075/}
}
TY  - JOUR
AU  - Bretin, Élie
AU  - Denis, Roland
AU  - Lachaud, Jacques-Olivier
AU  - Oudet, Édouard
TI  - Phase-field modelling and computing for a large number of phases
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 805
EP  - 832
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018075/
DO  - 10.1051/m2an/2018075
LA  - en
ID  - M2AN_2019__53_3_805_0
ER  - 
%0 Journal Article
%A Bretin, Élie
%A Denis, Roland
%A Lachaud, Jacques-Olivier
%A Oudet, Édouard
%T Phase-field modelling and computing for a large number of phases
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 805-832
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018075/
%R 10.1051/m2an/2018075
%G en
%F M2AN_2019__53_3_805_0
Bretin, Élie; Denis, Roland; Lachaud, Jacques-Olivier; Oudet, Édouard. Phase-field modelling and computing for a large number of phases. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 805-832. doi : 10.1051/m2an/2018075. http://www.numdam.org/articles/10.1051/m2an/2018075/

[1] M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose lagrange multiplier is nonlocal and local. Interfaces Free Bound. 16 (2014) 243–268. | DOI | MR | Zbl

[2] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. | DOI

[3] L. Ambrosio and N. Dancer, Geometric evolution problems, distance function and viscosity solutions. In: Calculus of Variations and Partial Differential Equations (Pisa, 1996), Springer, Berlin (2000) 5–93. | DOI | MR | Zbl

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). | DOI | MR | Zbl

[5] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Annales de l’institut. Henri Poincaré (C) Analyse non linéaire 7 (1990) 67–90. | DOI | Numdam | MR | Zbl

[6] J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in 3 . J. Comput. Phys. 227 (2008) 4281–4307. | DOI | MR | Zbl

[7] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies. Interfaces Free Bound. 12 (2010) 187–234. | DOI | MR | Zbl

[8] P.W. Bates, S. Brown and J.L. Han, Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model. 6 (2009) 33–49. | MR | Zbl

[9] G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ. 8 (1995) 735–752. | MR | Zbl

[10] J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, edited by J. Taylor. Computational Crystal Growers Workshop, Selected Lectures in Math. Amer. Math. Soc. (1992) 73–83.

[11] K.A. Brakke, The surface evolver. Exp. Math. 1 (1992) 141–165. | DOI | MR | Zbl

[12] M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Methods Appl. Sci. 34 (2011) 1157–1180. | DOI | MR | Zbl

[13] E. Bretin and S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics. Interfaces Free Bound. 19 (2017) 141–182. | DOI | MR | Zbl

[14] G. Caginalp and P.C. Fife, Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48 (1988) 506–518. | DOI | MR

[15] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI | Zbl

[16] X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96 (1992) 116–141. | DOI | MR | Zbl

[17] L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108 (1998) 147–158. | DOI | Zbl

[18] Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn. Acad. Ser. A Math. Sci. 65 (1989) 207–210. | MR | Zbl

[19] X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation. Appl. Anal. 69 (1998) 47–56. | MR | Zbl

[20] S.J. Cox, F. Graner, F. Vaz, C. Monnereau-Pittet and N. Pittet, Minimal perimeter for n identical bubbles in two dimensions: calculations and simulations. Philos. Mag. 83 (2003) 1393–1406. | DOI

[21] K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | DOI | MR | Zbl

[22] P. De Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. | DOI | MR | Zbl

[23] S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68 (2015) 808–864. | DOI | MR | Zbl

[24] L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33 (1991) 635–681. | MR | Zbl

[25] D. Eyre, Computational and Mathematical Models of Microstructural Evolution. Material Research Society, Warrendale, PA (1998).

[26] X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73 (2004) 541–567. | DOI | MR | Zbl

[27] X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive finite element method for the allen–cahn equation and the mean curvature flow. J. Sci. Comput. 24 (2005) 121–146. | DOI | MR | Zbl

[28] H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D Nonlinear Phenom. 115 (1998) 87–108. | DOI | MR | Zbl

[29] H. Garcke, B. Nestler and B. Stoth, A multi phase field concept: Numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60 (1999) 295–315. | DOI | MR | Zbl

[30] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998). | MR | Zbl

[31] J. Gruber, N. Ma, Y. Wang, A.D. Rollett and G.S. Rohrer, Sparse data structure and algorithm for the phase field method. Model. Simul. Mater. Sci. Eng. 14 (2006) 1189. | DOI

[32] C. Herring, Surface Tension as a Motivation for Sintering. Springer, Berlin Heidelberg, Berlin, Heidelberg (1999) 33–69.

[33] H. Ishii, G.E. Pires and P.E. Souganidis, Threshold dynamics type approximation schemes for propagating fronts. J. Math. Soc. Jpn. 51 (1999) 267–308. | DOI | MR | Zbl

[34] Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the allen–cahn equation. Comput. Math. Appl. 60 (2010) 1591–1606. | DOI | MR | Zbl

[35] P. Loreti and R. March, Propagation of fronts in a nonlinear fourth order equation. Eur. J. Appl. Math. 11 (2000) 203–213. | DOI | MR | Zbl

[36] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge University Press, Cambridge (2012). | DOI | MR | Zbl

[37] L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. | MR | Zbl

[38] F. Morgan, The hexagonal honeycomb conjecture. Trans. Am. Math. Soc. 351 (1999) 1753–1763. | DOI | MR | Zbl

[39] W.W. Mullins, Two-Dimensional Motion of Idealized Grain Boundaries. Springer, Berlin Heidelberg, Berlin, Heidelberg (1999) 70–74. | MR

[40] R. Nürnberg, Numerical simulations of immiscible fluid clusters. Appl. Numer. Math. 59 (2009) 1612–1628. | DOI | MR | Zbl

[41] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences. Springer-Verlag, New York, New York, NY (2002). | MR | Zbl

[42] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York (2003). | DOI | Zbl

[43] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl

[44] E. Oudet, Approximation of partitions of least perimeter by Gamma-convergence: around Kelvin’s conjecture. Exp. Math. 20 (2011) 260–270. | DOI | MR | Zbl

[45] R.L. Pego, Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A 422 (1989) 261–278. | DOI | MR | Zbl

[46] S.J. Ruuth, Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144 (1998) 603–625. | DOI | MR | Zbl

[47] J. Shen, C. Wang, X. Wang and S.M. Wise, Second-order convex splitting schemes for gradient flows with ehrlich-schwoebel type energy: Application to thin film epitaxy. SIAM J. Numer. Anal. 50 (2012) 105–125. | DOI | MR | Zbl

[48] L. Vanherpe, N. Moelans, B. Blanpain and S. Vandewalle, Bounding box algorithm for three-dimensional phase-field simulations of microstructural evolution in polycrystalline materials. Phys. Rev. E 76 (2007) 056702. | DOI

[49] S. Vedantam and B.S.V. Patnaik, Efficient numerical algorithm for multiphase field simulations. Phys. Rev. E 73 (2006) 016703. | DOI

[50] D. Weaire and R. Phelan, A counter-example to kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69 (1994) 107–110. | DOI | MR | Zbl

[51] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc. 2 (1939) 243–327. | DOI | JFM | MR | Zbl

[52] J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31 (2009) 3042–3063. | DOI | MR | Zbl

Cité par Sources :