We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.
Mots-clés : Nonconforming virtual element, eigenvalue problem, polygonal meshes
@article{M2AN_2019__53_3_749_0, author = {Gardini, Francesca and Manzini, Gianmarco and Vacca, Giuseppe}, title = {The nonconforming {Virtual} {Element} {Method} for eigenvalue problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {749--774}, publisher = {EDP-Sciences}, volume = {53}, number = {3}, year = {2019}, doi = {10.1051/m2an/2018074}, mrnumber = {3959470}, zbl = {1431.65214}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018074/} }
TY - JOUR AU - Gardini, Francesca AU - Manzini, Gianmarco AU - Vacca, Giuseppe TI - The nonconforming Virtual Element Method for eigenvalue problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 749 EP - 774 VL - 53 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018074/ DO - 10.1051/m2an/2018074 LA - en ID - M2AN_2019__53_3_749_0 ER -
%0 Journal Article %A Gardini, Francesca %A Manzini, Gianmarco %A Vacca, Giuseppe %T The nonconforming Virtual Element Method for eigenvalue problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 749-774 %V 53 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018074/ %R 10.1051/m2an/2018074 %G en %F M2AN_2019__53_3_749_0
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe. The nonconforming Virtual Element Method for eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 749-774. doi : 10.1051/m2an/2018074. http://www.numdam.org/articles/10.1051/m2an/2018074/
[1] Sobolev spaces. In Vol. 65 of Pure and Applied Mathematics. Academic Press, New York-London (1975). | MR | Zbl
,[2] Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London (1965). | MR | Zbl
,[3] Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,[4] A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl
, , and ,[5] The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. | DOI | MR | Zbl
, and ,[6] A stress/displacement virtual element method for plane elasticity problems. Comput. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | DOI | MR | Zbl
, , and ,[7] The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | DOI | Numdam | MR | Zbl
, and ,[8] Eigenvalue problems. In: Handbook of Numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 641–787. | MR | Zbl
and ,[9] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,[10] Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | DOI | MR | Zbl
, and ,[11] Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | DOI | Numdam | MR | Zbl
and ,[12] A virtual element method for the acoustic vibration problem, Numer. Math. 136 (2017) 725–763. | DOI | MR | Zbl
, , and ,[13] Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39 (2018) 315–334. | DOI | MR | Zbl
, , , and ,[14] Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | DOI | MR | Zbl
, , and ,[15] High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | DOI | MR | Zbl
, and ,[16] Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR | Zbl
, and ,[17] Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | DOI | Numdam | MR | Zbl
, and ,[18] A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2013) 759–781. | DOI | MR | Zbl
and ,[19] A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | DOI | MR | Zbl
, , , and ,[20] Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | DOI | MR | Zbl
,[21] Poincaré-Friedrichs inequalities for piecewise functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | DOI | MR | Zbl
,[22] Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | DOI | MR | Zbl
, and ,[23] The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). | MR | Zbl
and ,[24] Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | DOI | Numdam | MR | Zbl
, and ,[25] Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,[26] Spectral approximation of elliptic operators by the Hybrid High-Order Method. J. Math. Comp. 88 (2019) 1559–1586. | DOI | MR | Zbl
, , and ,[27] Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200 (2011) 1150–1160. | DOI | MR | Zbl
, and ,[28] A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | DOI | MR | Zbl
, , and ,[29] The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | DOI | MR | Zbl
, and ,[30] Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | DOI | MR | Zbl
, , and ,[31] Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR | Zbl
, and ,[32] Basic principles of virtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26 (2016) 1567–1598. | DOI | MR | Zbl
, , and ,[33] Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017) 148–192. | DOI | MR | Zbl
, and ,[34] Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1). In Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 17–351. | DOI | MR | Zbl
,[35] Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR | Zbl
, and ,[36] Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Available at: http://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004).
,[37] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl
, and ,[38] Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. | DOI | MR | Zbl
, and ,[39] Mathematical aspects of discontinuous Galerkin methods. In Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | DOI | MR | Zbl
and ,[40] Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | MR | Zbl
and ,[41] Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | DOI | Numdam | MR | Zbl
and ,[42] Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | DOI | MR | Zbl
and ,[43] Singularities in boundary value problems and exact controllability of hyperbolic systems. In: Optimization, Optimal Control and Partial Differential Equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | DOI | MR | Zbl
,[44] Perturbation Theory for Linear Operators. 2nd edition. Springer-Verlag, Berlin (1976). | MR | Zbl
,[45] High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272 (2014) 360–385. | DOI | MR | Zbl
and ,[46] Non-conforming harmonic virtual element method: -and -versions. J. Sci. Comput. 77 (2018) 1874–1908. | DOI | MR | Zbl
, and ,[47] A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl
, and ,[48] A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74 (2017) 2172–2190. | DOI | MR | Zbl
, and ,[49] A virtual element method for the vibration problem of kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | DOI | Numdam | MR | Zbl
, and ,[50] PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45 (2012) 309–328. | DOI | MR | Zbl
, , and ,[51] Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | DOI | MR | Zbl
,[52] An H1-conforming virtual element for darcy and brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | DOI | MR | Zbl
,[53] A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | DOI | MR | Zbl
, and ,Cité par Sources :