An Eulerian finite element method for PDEs in time-dependent domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 585-614.

The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.

DOI : 10.1051/m2an/2018068
Classification : 65M12, 65M60, 65M85
Mots-clés : Evolving domains, unfitted FEM, cutFEM
Lehrenfeld, Christoph 1 ; Olshanskii, Maxim 1

1
@article{M2AN_2019__53_2_585_0,
     author = {Lehrenfeld, Christoph and Olshanskii, Maxim},
     title = {An {Eulerian} finite element method for {PDEs} in time-dependent domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {585--614},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018068},
     zbl = {1422.65223},
     mrnumber = {3942178},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018068/}
}
TY  - JOUR
AU  - Lehrenfeld, Christoph
AU  - Olshanskii, Maxim
TI  - An Eulerian finite element method for PDEs in time-dependent domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 585
EP  - 614
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018068/
DO  - 10.1051/m2an/2018068
LA  - en
ID  - M2AN_2019__53_2_585_0
ER  - 
%0 Journal Article
%A Lehrenfeld, Christoph
%A Olshanskii, Maxim
%T An Eulerian finite element method for PDEs in time-dependent domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 585-614
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018068/
%R 10.1051/m2an/2018068
%G en
%F M2AN_2019__53_2_585_0
Lehrenfeld, Christoph; Olshanskii, Maxim. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 585-614. doi : 10.1051/m2an/2018068. http://www.numdam.org/articles/10.1051/m2an/2018068/

[1] A. Alphonse, C.M. Elliott and B. Stinner, An abstract framework for parabolic pdes on evolving spaces. Port. Math. 72 (2015) 1–47. | DOI | MR | Zbl

[2] E. Burman, Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. | DOI | MR | Zbl

[3] E. Burman, S. Claus, P. Hansbo, M.G. Larson and A. Massing, Cutfem: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104 (2015) 472–501. | DOI | MR | Zbl

[4] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. | DOI | MR | Zbl

[5] E. Burman and P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM: M2AN 48 (2014) 859–874. | DOI | Numdam | MR | Zbl

[6] J. Chessa and T. Belytschko, Arbitrary discontinuities in space–time finite elements by level sets and X-FEM. Int. J. Numer. Methods Eng. 61 (2004) 2595–2614. | DOI | MR | Zbl

[7] C.M. Elliott and T. Ranner, Finite element analysis for a coupled bulk–surface partial differential equation. IMA J. Numer. Anal. 33 (2013) 377–402. | DOI | MR | Zbl

[8] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer, New York, NY (2004). | DOI | MR | Zbl

[9] H. Federer, Curvature measures. Trans. Am. Math. Soc. 93 (1959) 418–491. | DOI | MR | Zbl

[10] T.-P. Fries and S. Omerović, Higher-order accurate integration of implicit geometries. Int. J. Numer. Methods Eng. 106 (2016) 323–371. | DOI | MR | Zbl

[11] R. Glowinski, T.-W. Pan, T.I. Hesla and D.D. Joseph, A distributed lagrange multiplier/fictitious domain method for articulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. | DOI | MR | Zbl

[12] J. Grande, Eulerian finite element methods for parabolic equations on moving surfaces. SIAM J. Sci. Comput. 36 (2014) B248–B271. | DOI | MR | Zbl

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains. In Vol. 69 of Classics in Applied Mathematics. SIAM (2011). | DOI | MR | Zbl

[14] S. Gross, M.A. Olshanskii and A. Reusken, A trace finite element method for a class of coupled bulk-interface transport problems. ESAIM: M2AN 49 (2015) 1303–1330. | DOI | Numdam | MR | Zbl

[15] C. Gürkan and A. Massing, A stabilized cut discontinuous Galerkin framework: I. elliptic boundary value and interface problems. Preprint Arxiv:https://arxiv.org/abs/1803.06635 1803.06635 (2018). | MR | Zbl

[16] P. Hansbo, M.G. Larson and S. Zahedi, A cut finite element method for coupled bulk–surface problems on time–dependent domains. Comput. Methods Appl. Mech. Eng. 307 (2016) 96–116. | DOI | MR | Zbl

[17] C. Hirt, A.A. Amsden and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974) 227–253. | DOI | MR | Zbl

[18] D. Kuhl and E. Ramm, Constraint energy momentum algorithm and its application to non-linear dynamics of shells. Comput. Methods Appl. Mech. Eng. 136 (1996) 293–315. | DOI | Zbl

[19] C. Lehrenfeld, The Nitsche XFEM-DG space-time method and its implementation in three space dimensions. SIAM J. Sci. Comput. 37 (2015) A245–A270. | DOI | MR | Zbl

[20] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings. Comp. Meth. Appl. Mech. Eng. 300 (2016) 716–733. | DOI | MR | Zbl

[21] C. Lehrenfeld, M.A. Olshanskii and X. Xu, A stabilized trace finite element method for partial differential equations on evolving surfaces. SIAM J. Numer. Anal. 56 (2018) 1643–1672. | DOI | MR | Zbl

[22] C. Lehrenfeld and A. Reusken, Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport problems. SIAM J. Numer. Anal. 51 (2013) 958–983. | DOI | MR | Zbl

[23] A. Lozovskiy, M.A. Olshanskii and Y.V. Vassilevski, A quasi-Lagrangian finite element method for the Navier–Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Eng. 333 (2018) 55–73 | DOI | MR | Zbl

[24] A. Massing, M.G. Larson, A. Logg and M.E. Rognes, A stabilized nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61 (2014) 604–628. | DOI | MR | Zbl

[25] A. Masud and T.J. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput. Methods Appl. Mech. Eng. 146 (1997) 91–126. | DOI | MR | Zbl

[26] R. Mittal, J.H. Seo, V. Vedula, Y.J. Choi, H. Liu, H.H. Huang, S. Jain, L. Younes, T. Abraham and R.T. George, Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305 (2016) 1065–1082. | DOI | MR | Zbl

[27] N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. | DOI | MR | Zbl

[28] B. Müller, F. Kummer and M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96 (2013) 512–528. | DOI | MR | Zbl

[29] ngsxfem : Add-On to NGSolve for uniffted finite element methods. http://github.com/ngsxfem.

[30] M.A. Olshanskii and A. Reusken, Error analysis of a space–time finite element method for solving PDEs on evolving surfaces. SIAM J. Numer. Anal. 52 (2014) 2092–2120. | DOI | MR | Zbl

[31] M.A. Olshanskii, A. Reusken and X. Xu, An Eulerian space–time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52 (2014) 1354–1377. | DOI | MR | Zbl

[32] M.A. Olshanskii and D. Safin, A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces. Math. Comput. 85 (2016) 1549–1570. | DOI | MR | Zbl

[33] M.A. Olshanskii and D. Safin, Numerical integration over implicitly defined domains for higher order unfitted finite element methods. Lobachevskii J. Math. 37 (2016) 582–596. | DOI | MR | Zbl

[34] M.A. Olshanskii and X. Xu, A trace finite element method for PDEs on evolving surfaces. SIAM J. Sci. Comput. 39 (2017) A1301–A1319. | DOI | MR | Zbl

[35] C.S. Peskin, Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (1977) 220–252. | DOI | MR | Zbl

[36] C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. | DOI | MR | Zbl

[37] J. Preuß, Higher order unfitted isoparametric space-time FEM on moving domains. Master’s thesis, NAM, University of Göttingen (2018).

[38] R. Saye, High-order quadrature method for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37 (2015) A993–A1019. | DOI | MR | Zbl

[39] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1 (1997) 41–52. | DOI | Zbl

[40] J. Schöberl, C++11 Implementation of Finite Elements in NGSolve. Institute for Analysis and Scientific Computing, Vienna University of Technology (2014).

[41] B. Schott, Stabilized cut finite element methods for complex interface coupled flow problems. Ph.D. thesis, TU Munich (2017).

[42] B. Schott and W. Wall, A new face-oriented stabilized xfem approach for 2D and 3D incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 276 (2014) 233–265. | DOI | MR | Zbl

[43] J.A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999). | MR | Zbl

[44] E.M. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30), in Vol. 30. Princeton University Press (2016). | MR | Zbl

[45] B. Su, R. San Tan, J. Le Tan, K.W.Q. Guo, J.M. Zhang, S. Leng, X. Zhao, J.C. Allen and L. Zhong, Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J. Biomech. 49 (2016) 1199–1205. | DOI

[46] T.E. Tezduyar, M. Behr, S. Mittal and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94 (1992) 353–371. | DOI | MR | Zbl

Cité par Sources :