Finite element approximation of the Isaacs equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 351-374.

We propose and analyze a two-scale finite element method for the Isaacs equation. The fine scale is given by the mesh size h whereas the coarse scale ε is dictated by an integro-differential approximation of the partial differential equation. We show that the method satisfies the discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak operator consistency of the finite element method, allows us to establish convergence of the numerical solution to the viscosity solution as ε, h → 0, and ε ≳ (h|log h|)1/2. In addition, using a discrete Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness assumptions on the exact solution.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018067
Classification : 65N12, 65N15, 65N30, 35J60, 35D40, 35Q91
Mots-clés : Fully nonlinear equations, discrete maximum principle, finite elements
Salgado, Abner J. 1 ; Zhang, Wujun 1

1
@article{M2AN_2019__53_2_351_0,
     author = {Salgado, Abner J. and Zhang, Wujun},
     title = {Finite element approximation of the {Isaacs} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {351--374},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018067},
     zbl = {1433.65311},
     mrnumber = {3939307},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018067/}
}
TY  - JOUR
AU  - Salgado, Abner J.
AU  - Zhang, Wujun
TI  - Finite element approximation of the Isaacs equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 351
EP  - 374
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018067/
DO  - 10.1051/m2an/2018067
LA  - en
ID  - M2AN_2019__53_2_351_0
ER  - 
%0 Journal Article
%A Salgado, Abner J.
%A Zhang, Wujun
%T Finite element approximation of the Isaacs equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 351-374
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018067/
%R 10.1051/m2an/2018067
%G en
%F M2AN_2019__53_2_351_0
Salgado, Abner J.; Zhang, Wujun. Finite element approximation of the Isaacs equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 351-374. doi : 10.1051/m2an/2018067. http://www.numdam.org/articles/10.1051/m2an/2018067/

[1] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558. | DOI | MR | Zbl

[2] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283. | DOI | MR | Zbl

[3] I.H. Biswas, I. Chowdhury and E.R. Jakobsen, On the rate of convergence for monotone numerical schemes for nonlocal Isaacs’ equations. Preprint arXiv:1709.07743 (2017). | MR | Zbl

[4] B. Bojanov and G. Petrova, Numerical integration over a disc. A new Gaussian quadrature formula. Numer. Math. 80 (1998) 39–59. | DOI | MR | Zbl

[5] B. Bojanov and G. Petrova, Uniqueness of the Gaussian quadrature for a ball. J. Approx. Theory 104 (2000) 21–44. | DOI | MR | Zbl

[6] O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47 (2009) 3001–3026. | DOI | MR | Zbl

[7] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edn. In Vol. 15 of Texts in Applied Mathematics. Springer, New York2008 | MR | Zbl

[8] L. Caffarelli and L. Silvestre, Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. In: Nonlinear Partial Differential Equations and Related Topics. Vol. 229 of American Mathematical Society Translations, Series 2. AMS, Providence, RI (2010) 67–85. | MR | Zbl

[9] L.A. Caffarelli and P.E. Souganidis, A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Comm. Pure Appl. Math. 61 (2008) 1–17. | DOI | MR | Zbl

[10] P.G. Ciarlet, Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl

[11] P.G. Ciarlet, The finite element method for elliptic problems. In: Classics in Applied Mathematics. SIAM, Philadelphia, PA 40 (2002). | MR | Zbl

[12] K. Debrabant and E.R. Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comp. 82 (2013) 1433–1462. | DOI | MR | Zbl

[13] A. Ern and J.-L. Guermond, Theory and practice of finite elements. In Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York, NY (2004). | DOI | MR | Zbl

[14] X. Feng, R. Glowinski and M. Neilan, Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55 (2013) 205–267. | DOI | MR | Zbl

[15] Q. Han and F. Lin, Elliptic partial differential equations. 2nd edition. In Vol. I of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, RI (2011). | MR | Zbl

[16] R.A. Hovard, Dinamicheskoe programmirovanie i Markovskie protsessy. Izdat. “Sovetskoe Radio”, Moscow (1964).

[17] E.R. Jakobsen, On error bounds for approximation schemes for non-convex degenerate elliptic equations. BIT 44 (2004) 269–285. | DOI | MR | Zbl

[18] E.R. Jakobsen, On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations. Asymptot. Anal. 49 (2006) 249–273. | MR | Zbl

[19] M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 51 (2013) 137–162. | DOI | MR | Zbl

[20] M. Kocan, Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72 (1995) 73–92. | DOI | MR | Zbl

[21] N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz 9 (1997) 245–256. | MR | Zbl

[22] N.V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients and Appl. Math. Optim. 52 (2005) 365–399. | DOI | MR | Zbl

[23] N.V. Krylov, On the rate of convergence of finite-difference approximations for elliptic Isaacs equations in smooth domains. Comm. Partial Differ. Equ. 40 (2015) 1393–1407. | DOI | MR | Zbl

[24] H.J. Kuo and N.S. Trudinger, Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal. 29 (1992) 123–135. | DOI | MR | Zbl

[25] D. Leykekhman and B. Vexler, Finite element pointwise results on convex polyhedral domains. SIAM J. Numer. Anal. 54 (2016) 561–587. | DOI | MR | Zbl

[26] T.S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31 (1953) 253–259. | DOI | MR | Zbl

[27] I.P. Mysovskikh, Interpolyatsionnye kubaturnye formuly. ``Nauka’’, Moscow (1981). | MR | Zbl

[28] N. Nadirashvili, V. Tkachev and S. Vlǎduţ, A non-classical solution to a Hessian equation from Cartan isoparametric cubic. Adv. Math. 231 (2012) 1589–1597. | DOI | MR | Zbl

[29] N. Nadirashvili and S. Vlǎduţ, Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal. 17 (2007) 1283–1296. | DOI | MR | Zbl

[30] N. Nadirashvili and S. Vlǎduţ, Singular viscosity solutions to fully nonlinear elliptic equations. J. Math. Pures Appl. 89 (2008) 107–113. | DOI | MR | Zbl

[31] M. Neilan, A.J. Salgado and W. Zhang, Numerical analysis of strongly nonlinear PDEs. Acta Numer. 26 (2017) 137–303. | DOI | MR | Zbl

[32] R.H. Nochetto and W. Zhang, Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form. Found. Comput. Math. 18 (2018) 537–593. | DOI | MR | Zbl

[33] G. Petrova, Cubature formulae for spheres, simplices and balls. J. Comput. Appl. Math. 162 (2004) 483–496. | DOI | MR | Zbl

[34] A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L of the Ḣ1-projection into finite element spaces. Math. Comput. 38 (1982) 1–22. | MR | Zbl

[35] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016. | DOI | MR | Zbl

[36] A.H. Stroud, Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, NJ (1971). | MR | Zbl

[37] O. Turanova, Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations. Calc. Var. Partial Differ. Equ. 54 (2015) 2939–2983. | DOI | MR | Zbl

Cité par Sources :