Interpolation and quasi-interpolation operators of Clément- and Scott-Zhang-type are analyzed on anisotropic polygonal and polyhedral meshes. Since no reference element is available, an appropriate linear mapping to a reference configuration plays a crucial role. A priori error estimates are derived respecting the anisotropy of the discretization. Finally, the found estimates are employed to propose an adaptive mesh refinement based on bisection which leads to highly anisotropic and adapted discretizations with general element shapes in two- and three-dimensions.
Accepté le :
DOI : 10.1051/m2an/2018066
Mots-clés : Anisotropic finite elements, polyhedral mesh, interpolation, error estimate, mesh adaptation
@article{M2AN_2019__53_2_475_0, author = {Wei{\ss}er, Steffen}, title = {Anisotropic polygonal and polyhedral discretizations in finite element analysis}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {475--501}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/m2an/2018066}, zbl = {1433.65316}, mrnumber = {3942176}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018066/} }
TY - JOUR AU - Weißer, Steffen TI - Anisotropic polygonal and polyhedral discretizations in finite element analysis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 475 EP - 501 VL - 53 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018066/ DO - 10.1051/m2an/2018066 LA - en ID - M2AN_2019__53_2_475_0 ER -
%0 Journal Article %A Weißer, Steffen %T Anisotropic polygonal and polyhedral discretizations in finite element analysis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 475-501 %V 53 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018066/ %R 10.1051/m2an/2018066 %G en %F M2AN_2019__53_2_475_0
Weißer, Steffen. Anisotropic polygonal and polyhedral discretizations in finite element analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 475-501. doi : 10.1051/m2an/2018066. http://www.numdam.org/articles/10.1051/m2an/2018066/
[1] Sobolev Spaces. Academic Press, Cambridge, MA (1975). | MR
,[2] A Nyström-based finite element method on polygonal elements. Comput. Math. Appl. 75 (2018) 3971–3986. | DOI | MR | Zbl
, and ,[3] Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). | MR | Zbl
,[4] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,[5] The mimetic finite difference method for elliptic problems. In Vol. 11 of MS&A, Modeling, Simulation and Applications. Springer, Cham11 (2014). | MR | Zbl
, and ,[6] Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | DOI | Numdam | MR | Zbl
and ,[7] A residual a posteriori error estimate for the Virtual Element Method. Math. Models Methods Appl. Sci. 27 (2017) 1423–1458. | DOI | MR | Zbl
and ,[8] A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | DOI | MR | Zbl
, , and ,[9] Approximation by finite element functions using local regularization. Rev. Française Automat. Inf. Rech. Opér. Sér. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,[10] From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes. In: Domain Decomposition Methods in Science and Engineering XVIII. In Vol. 70 of Lect. Notes Comput. Sci. Eng. Springer, Berlin Heidelberg (2009), 315–322. | DOI | MR | Zbl
, and ,[11] Generalized barycentric coordinates and applications. Acta Numer. 24 (2015) 161–214. | DOI | MR | Zbl
,[12] New anisotropic a priori error estimates. Numer. Math. 89 (2001) 641–667. | DOI | MR | Zbl
and ,[13] Anisotropic error estimates for elliptic problems. Numer. Math. 94 (2003) 67–92. | DOI | MR | Zbl
and ,[14] Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput. 30 (2007/2008) 246–271. | DOI | MR | Zbl
, and ,[15] Convection adapted BEM-based FEM. ZAMM – Z. Angew. Math. Mech. 96 (2016) 1467–1481. | DOI | MR | Zbl
, and ,[16] Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1 (2006) 276–310. | Zbl
,[17] A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229 (2010) 2179–2198. | DOI | MR | Zbl
, and ,[18] Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (2007) 71.1–71.9. | DOI
, , , and ,[19] An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490. | DOI | MR | Zbl
,[20] Continuous mesh framework Part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49 (2011) 38–60. | DOI | MR | Zbl
and, ,[21] Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl
and ,[22] FEM with Trefftz trial functions on polyhedral elements. J. Comput. Appl. Math. 263 (2014) 202–217. | DOI | MR | Zbl
and ,[23] A review of anisotropic refinement methods for triangular meshes in fem. In: , Advanced Finite Element Methods and Applications, edited by and . Springer Berlin Heidelberg, Berlin, Heidelberg (2013) , 133–152. | DOI | MR | Zbl
,[24] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,[25] Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,[26] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). | Zbl
,[27] Residual error estimate for BEM-based FEM on polygonal meshes. Numer. Math. 118 (2011) 765–788. | DOI | MR | Zbl
,[28] Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM. Comput. Math. Appl. 67 (2014) 1390–1406. | DOI | MR | Zbl
,[29] Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM. Comput. Math. Appl. 73 (2017) 187–202. | DOI | MR | Zbl
,[30] The dual-weighted residual estimator realized on polygonal meshes. Comput. Methods Appl. Math. 18 (2018) 753–776. | DOI | MR | Zbl
and ,Cité par Sources :