Anisotropic polygonal and polyhedral discretizations in finite element analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 475-501.

Interpolation and quasi-interpolation operators of Clément- and Scott-Zhang-type are analyzed on anisotropic polygonal and polyhedral meshes. Since no reference element is available, an appropriate linear mapping to a reference configuration plays a crucial role. A priori error estimates are derived respecting the anisotropy of the discretization. Finally, the found estimates are employed to propose an adaptive mesh refinement based on bisection which leads to highly anisotropic and adapted discretizations with general element shapes in two- and three-dimensions.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018066
Classification : 65D05, 65N15, 65N30, 65N50
Mots-clés : Anisotropic finite elements, polyhedral mesh, interpolation, error estimate, mesh adaptation
Weißer, Steffen 1

1
@article{M2AN_2019__53_2_475_0,
     author = {Wei{\ss}er, Steffen},
     title = {Anisotropic polygonal and polyhedral discretizations in finite element analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {475--501},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018066},
     zbl = {1433.65316},
     mrnumber = {3942176},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018066/}
}
TY  - JOUR
AU  - Weißer, Steffen
TI  - Anisotropic polygonal and polyhedral discretizations in finite element analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 475
EP  - 501
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018066/
DO  - 10.1051/m2an/2018066
LA  - en
ID  - M2AN_2019__53_2_475_0
ER  - 
%0 Journal Article
%A Weißer, Steffen
%T Anisotropic polygonal and polyhedral discretizations in finite element analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 475-501
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018066/
%R 10.1051/m2an/2018066
%G en
%F M2AN_2019__53_2_475_0
Weißer, Steffen. Anisotropic polygonal and polyhedral discretizations in finite element analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 475-501. doi : 10.1051/m2an/2018066. http://www.numdam.org/articles/10.1051/m2an/2018066/

[1] R.A. Adams, Sobolev Spaces. Academic Press, Cambridge, MA (1975). | MR

[2] A. Anand, J.S. Ovall and S. Weißer, A Nyström-based finite element method on polygonal elements. Comput. Math. Appl. 75 (2018) 3971–3986. | DOI | MR | Zbl

[3] T. Apel, Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). | MR | Zbl

[4] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

[5] L. Beirão Da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. In Vol. 11 of MS&A, Modeling, Simulation and Applications. Springer, Cham11 (2014). | MR | Zbl

[6] L. Beirão Da Veiga and G. Manzini, Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | DOI | Numdam | MR | Zbl

[7] S. Berrone and A. Borio, A residual a posteriori error estimate for the Virtual Element Method. Math. Models Methods Appl. Sci. 27 (2017) 1423–1458. | DOI | MR | Zbl

[8] A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | DOI | MR | Zbl

[9] P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Inf. Rech. Opér. Sér. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl

[10] D. Copeland, U. Langer and D. Pusch, From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes. In: Domain Decomposition Methods in Science and Engineering XVIII. In Vol. 70 of Lect. Notes Comput. Sci. Eng. Springer, Berlin Heidelberg (2009), 315–322. | DOI | MR | Zbl

[11] M.S. Floater, Generalized barycentric coordinates and applications. Acta Numer. 24 (2015) 161–214. | DOI | MR | Zbl

[12] L. Formaggia and S. Perotto, New anisotropic a priori error estimates. Numer. Math. 89 (2001) 641–667. | DOI | MR | Zbl

[13] L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems. Numer. Math. 94 (2003) 67–92. | DOI | MR | Zbl

[14] E.H. Georgoulis, E. Hall and P. Houston, Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput. 30 (2007/2008) 246–271. | DOI | MR | Zbl

[15] C. Hofreither, U. Langer and S. Weißer, Convection adapted BEM-based FEM. ZAMM – Z. Angew. Math. Mech. 96 (2016) 1467–1481. | DOI | MR | Zbl

[16] W. Huang, Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1 (2006) 276–310. | Zbl

[17] W. Huang, L. Kamenski and J. Lang, A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229 (2010) 2179–2198. | DOI | MR | Zbl

[18] P. Joshi, M. Meyer, T. Derose, B. Green and T. Sanocki, Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (2007) 71.1–71.9. | DOI

[19] G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490. | DOI | MR | Zbl

[20] A. Loseille and, F. Alauzet, Continuous mesh framework Part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49 (2011) 38–60. | DOI | MR | Zbl

[21] S. Rjasanow and S. Weißer, Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl

[22] S. Rjasanow and S. Weißer, FEM with Trefftz trial functions on polyhedral elements. J. Comput. Appl. Math. 263 (2014) 202–217. | DOI | MR | Zbl

[23] R. Schneider, A review of anisotropic refinement methods for triangular meshes in fem. In: , Advanced Finite Element Methods and Applications, edited by T. Apel and O. Steinbach. Springer Berlin Heidelberg, Berlin, Heidelberg (2013) , 133–152. | DOI | MR | Zbl

[24] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl

[25] N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl

[26] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). | Zbl

[27] S. Weißer, Residual error estimate for BEM-based FEM on polygonal meshes. Numer. Math. 118 (2011) 765–788. | DOI | MR | Zbl

[28] S. Weißer, Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM. Comput. Math. Appl. 67 (2014) 1390–1406. | DOI | MR | Zbl

[29] S. Weißer, Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM. Comput. Math. Appl. 73 (2017) 187–202. | DOI | MR | Zbl

[30] S. Weißer and T. Wick, The dual-weighted residual estimator realized on polygonal meshes. Comput. Methods Appl. Math. 18 (2018) 753–776. | DOI | MR | Zbl

Cité par Sources :