Simulation and structural optimization of 3d Timoshenko beam networks based on fully analytic network solutions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2409-2431.

This article is concerned with the efficient and accurate simulation and optimization of linear Timoshenko beam networks subjected to external loads. A solution scheme based on analytic ansatz-functions known to provide analytic solutions for the deformation and rotation of a single beam with given boundary data is extended to the full network. It is demonstrated that the analytic approach is equivalent to a finite element (FE) method where only one element with a suitably chosen shape function per beam is required. The solution of the FE-type system provides analytic solutions at the nodes, from which the solutions along the beams can be reconstructed. Consequently analytic solutions for the network can be computed by a numerical scheme without applying a spacial discretization. While the assembly of the local stiffness matrices is slightly more expensive compared to an FE model using, e.g., linear ansatz-functions, the complexity of the solution of the FE-system is not. This is particularly interesting for topology and material optimization problems formulated on the network. In order to demonstrate the efficiency of the approach a numerical comparison to the case of linear ansatz-functions is provided followed by a series of studies with topology and multi-material optimization problems on networks.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018065
Classification : 34B45, 68U20, 74P05, 90C30, 90C90
Mots clés : Timoshenko beam network, analytic solutions, topology optimization, multi-material optimization
Kufner, Tobias 1 ; Leugering, Günter 1 ; Semmler, Johannes 1 ; Sting, Michael 1 ; Strohmeyer, Christoph 1

1
@article{M2AN_2018__52_6_2409_0,
     author = {Kufner, Tobias and Leugering, G\"unter and Semmler, Johannes and Sting, Michael and Strohmeyer, Christoph},
     title = {Simulation and structural optimization of 3d {Timoshenko} beam networks based on fully analytic network solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2409--2431},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018065},
     mrnumber = {3909807},
     zbl = {1419.34107},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018065/}
}
TY  - JOUR
AU  - Kufner, Tobias
AU  - Leugering, Günter
AU  - Semmler, Johannes
AU  - Sting, Michael
AU  - Strohmeyer, Christoph
TI  - Simulation and structural optimization of 3d Timoshenko beam networks based on fully analytic network solutions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2409
EP  - 2431
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018065/
DO  - 10.1051/m2an/2018065
LA  - en
ID  - M2AN_2018__52_6_2409_0
ER  - 
%0 Journal Article
%A Kufner, Tobias
%A Leugering, Günter
%A Semmler, Johannes
%A Sting, Michael
%A Strohmeyer, Christoph
%T Simulation and structural optimization of 3d Timoshenko beam networks based on fully analytic network solutions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2409-2431
%V 52
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018065/
%R 10.1051/m2an/2018065
%G en
%F M2AN_2018__52_6_2409_0
Kufner, Tobias; Leugering, Günter; Semmler, Johannes; Sting, Michael; Strohmeyer, Christoph. Simulation and structural optimization of 3d Timoshenko beam networks based on fully analytic network solutions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2409-2431. doi : 10.1051/m2an/2018065. http://www.numdam.org/articles/10.1051/m2an/2018065/

W. Achtziger , M.P. Bendsøe , A. Ben-Tal , J. Zowe , Equivalent displacement based formulations for maximum strength truss topology design. IMPACT Comput. Sci. Eng. 4 (1992) 315–345. | DOI | MR | Zbl

A. Ben-Tal , M.P. Bendsøe , A new method for optimal truss topology design. SIAM J. Optim. 3 (1993) 322–358. | DOI | MR | Zbl

M.P. Bendsøe , Optimal shape design as a material distribution problem. Struct. Optim. 1 (1989) 192–202. | DOI

M.P. Bendsøe , A. Ben-Tal , J. Zowe , Optimization methods for truss geometry and topology design. Struct. Multi. Optim. 7 (1994) 141–159. | DOI

R. Davis , R.D. Henshell , G.B. Warburton , A Timoshenko beam element. J. Sound Vibr. 22 (1972) 475–487. | DOI

W.S. Dorn , R.E. Gomory , H.J. Greenberg , Automatic design of optimal structures. J. Mech. 3 (1964) 25–52.

H. Fredricson , Topology optimization of frame structures-joint penalty and material selection. Struct. Multi. Optim. 30 (2005) 193–200. | DOI

H. Fredricson , T. Johansen , A. Klarbring , J. Petersson , Topology optimization of frame structures with flexible joints. Struct. Multi. Optim. 25 (2003) 199–214. | DOI | MR | Zbl

Z. Friedman , J.B. Kosmatka , An improved two-node timoshenko beam finite element. Comput. Struct. 47 (1993) 473–481. | DOI | Zbl

P.E. Gill , W. Murray , M.A. Saunders , SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12 (2002) 979–1006. | DOI | MR | Zbl

W.S. Hemp , Optimum Structures. Clarendon Press Oxford, Oxford (1973).

C. Hvejsel , E. Lund , M. Stolpe , Optimization strategies for discrete multi-material stiffness optimization. Struct. Multi. Optim. 44 (2011) 149–163. | DOI

C.F. Hvejsel , E. Lund , Material interpolation schemes for unified topology and multi-material optimization. Struct. Multi. Optim. 43 (2011) 811–825. | DOI | Zbl

G. Jelenić , E. Papa , Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order. Arch. Appl. Mech. 81 (2011) 171–183. | DOI | Zbl

K. Kapur , Vibrations of a Timoshenko beam using finite-element approach. J. Acoust. Soc. Am. 40 (1966) 1058–1063. | DOI | Zbl

M. Kočvara , Topology optimization with displacement constraints: a bilevel programming approach. Struct. Optim. 14 (1997) 256–263. | DOI

J.E. Lagnese , E.J.P.G. Leugering , G. Schmidt , Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures Birkhäuser Boston Inc., Boston, MA (1994). | DOI | MR | Zbl

A.W. Lees , D.L. Thomas , Unified Timoshenko beam finite element. J. Sound Vibr. 80 (1982) 355–366. | DOI | Zbl

E. Lund , J. Stegmann , On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8 (2005) 109–124. | DOI

Y. Luo , An efficient 3D timoshenko beam element with consistent shape functions. Adv. Theor. Appl. Mech. 1 (2008) 95–106. | Zbl

S. Mukherjee , G. Prathap , Analysis of shear locking in Timoshenko beam elements using the function space approach. Commun. Numer. Methods Eng. 17 (2001) 385–393. | DOI | Zbl

E. Papa Dukić , G. Jelenić , Exact solution of 3D Timoshenko beam problem: problem-dependent formulation. Arch. Appl. Mech. 84 (2014) 375–384. | DOI | Zbl

G. Prathap , G.R. Bhashyam , Reduced integration and the shear-flexible beam element. Int. J. Numer. Methods Eng. 18 (1982) 195–210. | DOI | Zbl

J.N. Reddy , On locking-free beam finite elements. Comput. Methods Appl. Mech. Eng. 7825 (1997) 113–132. | DOI | Zbl

I. Romero , F. Armero , An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energymomentum conserving scheme in dynamics. Int. J. Numer. Methods Eng. 54 (2002) 1683–1716. | DOI | MR | Zbl

G.I.N. Rozvany , T. Lewiński , M. Zhou , Extended exact solutions for least-weight truss layouts-Part I: cantilever with a horizontal axis of symmetry. Int. J. Mech. Sci. 36 (1994) 375–398. | DOI | Zbl

I. Senjanović , N. Vladimir , D.S. Cho , A shear locking-free beam finite element based on the modified Timoshenko beam theory. Trans. FAMENA 37 (2013) 1–16.

J. Stegmann , Analysis and optimization of laminated composite shell structures. Ph.D. thesis (2004).

J. Stegmann , E. Lund , Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62 (2005) 2009–2027. | DOI | Zbl

R.L. Taylor , F.C. Filippou , A. Saritas , F. Auricchio , A mixed finite element method for beam and frame problems. Comput. Mech. 31 (2003) 192–203. | DOI | Zbl

A. Tessler , S.B. Dong , On a hierarchy of conforming timoshenko beam elements. Comput. Struct. 14 (1981) 335–344. | DOI

D.L. Thomas , J.M. Wilson , R.R. Wilson , Timoshenko beam finite elements. J. Sound Vibr. 31 (1973) 315–330. | DOI | Zbl

J. Thomas , B.A.H. Abbas , Finite element model for dynamic analysis of Timoshenko beam. J. Sound Vibr. 41 (1975) 291–299. | DOI

S.P. Timoshenko , On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41 (1921) 744–746. | DOI

S.P. Timoshenko , On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43 (1922) 125–131. | DOI

B. Torstenfelt , A. Klarbring , Structural optimization of modular product families with application to car space frame structures. Struct. Multi. Optim. 32 (2006) 133–140. | DOI

B. Torstenfelt , A. Klarbring , Conceptual optimal design of modular car product families using simultaneous size, shape and topology optimization. Finite Ele. Anal. Des. 43 (2007) 1050–1061. | DOI | MR

T. Yokoyama , A reduced integration Timoshenko beam element. J. Sound Vibr. 169 (1994) 411–418. | DOI | Zbl

Cité par Sources :