An optimized Schwarz method with relaxation for the Helmholtz equation: the negative impact of overlap
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 249-268.

In this paper we study how the overlapping size influences the convergence rate of an optimized Schwarz domain decomposition (DD) method with relaxation in the two subdomain case for the Helmholtz equation. Through choosing suitable parameters, we find that the convergence rate is independent of the wave number k and mesh size h, but sensitively depends on the overlapping size. Furthermore, by careful analysis, we obtain that the convergence behavior deteriorates with the increase of the overlapping size. Numerical results which confirm our theory are given.

DOI : 10.1051/m2an/2018061
Classification : 65N55
Mots-clés : optimized Schwarz method, the Helmholtz equation, overlapping size
Liu, Yongxiang 1 ; Xu, Xuejun 1

1
@article{M2AN_2019__53_1_249_0,
     author = {Liu, Yongxiang and Xu, Xuejun},
     title = {An optimized {Schwarz} method with relaxation for the {Helmholtz} equation: the negative impact of overlap},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {249--268},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018061},
     zbl = {1418.65190},
     mrnumber = {3937351},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018061/}
}
TY  - JOUR
AU  - Liu, Yongxiang
AU  - Xu, Xuejun
TI  - An optimized Schwarz method with relaxation for the Helmholtz equation: the negative impact of overlap
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 249
EP  - 268
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018061/
DO  - 10.1051/m2an/2018061
LA  - en
ID  - M2AN_2019__53_1_249_0
ER  - 
%0 Journal Article
%A Liu, Yongxiang
%A Xu, Xuejun
%T An optimized Schwarz method with relaxation for the Helmholtz equation: the negative impact of overlap
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 249-268
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018061/
%R 10.1051/m2an/2018061
%G en
%F M2AN_2019__53_1_249_0
Liu, Yongxiang; Xu, Xuejun. An optimized Schwarz method with relaxation for the Helmholtz equation: the negative impact of overlap. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 249-268. doi : 10.1051/m2an/2018061. http://www.numdam.org/articles/10.1051/m2an/2018061/

[1] V.I. Agoshkov and V.I. Lebedev, Poincaré-Steklov operators and methods of partition of the domain in variational problems. Comput. Process. Syst. 2 (1985) 173–227. | MR | Zbl

[2] Y. Boubendir, X. Antoine and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231 (2012) 262–280. | DOI | MR | Zbl

[3] A. Brandt and I. Livshits, Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal. 6 (1997) 162–181. | MR | Zbl

[4] X. Cai, M. Casarin, F. Jr. Elliott and O. Widlund, Overlapping Schwarz algorithms for solving Helmholtzs equation. Contemp. Math. 218 (1998) 391–399. | DOI | MR | Zbl

[5] X. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21 (1999) 792–797. | DOI | MR | Zbl

[6] W. Chen, Y. Liu and X. Xu, A robust domain decomposition method for the Helmholtz equation with high wave number. ESAIM: M2AN 50 (2016) 921–944. | DOI | Numdam | MR | Zbl

[7] W. Chen, X. Xu and S. Zhang, On the optimal convergence rate of a Robin-Robin domain decomposition method. J. Comput. Math. 32 (2014) 456–475. | DOI | MR | Zbl

[8] Z. Chen and X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51 (2013) 2331–2356. | DOI | MR | Zbl

[9] B. Després, Domain decomposition method and Helmholtz problem. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena, edited by G. Cohen, L. Halpern and P. Joly. SIAM, Philadelphia (1991) 44–52. | MR

[10] V. Dolean, F. Nataf and P. Jolivet, An introduction to domain decomposition methods: algorithms, theory and parallel implementation. SIAM, Philadelphia, PA (2015). | DOI | MR

[11] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27 (2006) 1471–1492. | DOI | MR | Zbl

[12] Y.A. Erlangga, C. Vuik and C.W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50 (2004) 409–425. | DOI | MR | Zbl

[13] Y.A. Erlangga, C. Vuik and C.W. Oosterlee, Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl. Numer. Math. 56 (2006) 648–666. | DOI | MR | Zbl

[14] O.G. Ernst and M.J. Gander, Why is difficult to solve Helmholtz problems with classical iterative methods. In: Numerical Analysis of Multiscale Problems, edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer-Verlag, New York (2011) 325–363. | MR | Zbl

[15] C. Farhat, P. Avery, R. Tezaur and J. Li, FETI-DPH: a dual-primal domain decomposition method for accoustic scattering. J. Comp. Acous. 13 (2005) 499–524. | DOI | MR | Zbl

[16] C. Farhat, A. Macedo and R. Tezaur, FETI-H: a scalable domain decomposition method for high frequency exterior Helmholtz problem. In: 11th International Conference on Domain Decomposition Method, edited by Choi-Hong Lai, Petter E. Bjørstad, M. Cross, and O. Widlund. DDM.ORG (1999) 231–241 | MR

[17] M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44 (2006) 699–731. | DOI | MR | Zbl

[18] M.J. Gander, L. Halpern and F. Magoules, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Meth. Fluids 55 (2007) 163–175. | DOI | MR | Zbl

[19] M.J. Gander, F. Magoules and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. | DOI | MR | Zbl

[20] C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems. In: Proceedings of the 9th International Conference on Domain Decomposition Methods, edited by P.E. Bjørstad, M.S. Espedal and D.E. Keyes. DDM.org, Bergen, Norway (1998) 382–389

[21] P.L. Lions, On the Schwarz alternating method III: a variant for nonoverlapping subdomains, In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, edited by T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund. SIAM, Philadelphia (1990) 202–223. | MR

[22] I. Livshits, A. Brandt, Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput. 28 (2006) 1228–1251. | DOI | MR | Zbl

[23] L. Mcinnes, R. Susan-Resiga, D. Keyes, H. Atassi, Additive Schwarz methods with nonreflecting boundary conditions for the parallel computation of Helmholtz problems, Contemp. Math. 218 (1998) 325–333. | DOI | MR | Zbl

[24] L. Qin and X. Xu, On a parallel Robin-type nonoverlapping domain decomposition method. SIAM J. Numer. Anal. 44 (2006) 2539–2558. | DOI | MR | Zbl

[25] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford; New York (1999). | MR | Zbl

[26] M.B. Van Gijzen, Y.A. Erlangga and C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J. Sci. Comput. 29 (2007) 1942–1958. | DOI | MR | Zbl

[27] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer (1998). | DOI | MR | Zbl

[28] A. St-Cyr, M. Gander and S. Thomas, Optimized restricted additive Schwarz methods, In: Domain Decomposition Methods in Science and Engineering XVI, edited by O.B. Widlund and D.E. Keyes. Springer, Berlin, Heidelberg (2007) 213–220. | DOI | MR

[29] C. Stolk, A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241 (2013) 240–252. | DOI | MR | Zbl

Cité par Sources :