This article is devoted to the construction of numerical methods which remain insensitive to the smallness of the semiclassical parameter for the linear Schrödinger equation in the semiclassical limit. We specifically analyse the convergence behavior of the first-order splitting. Our main result is a proof of uniform accuracy. We illustrate the properties of our methods with simulations.
Accepté le :
DOI : 10.1051/m2an/2018060
Mots-clés : Schrödinger equation, semiclassical limit, numerical simulation, uniformly accurate, Madelung transform, splitting schemes
@article{M2AN_2019__53_2_443_0, author = {Chartier, Philippe and Le Treust, Lo{\"\i}c and M\'ehats, Florian}, title = {Uniformly accurate time-splitting methods for the semiclassical linear {Schr\"odinger} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {443--473}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/m2an/2018060}, zbl = {1431.35166}, mrnumber = {3942175}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018060/} }
TY - JOUR AU - Chartier, Philippe AU - Le Treust, Loïc AU - Méhats, Florian TI - Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 443 EP - 473 VL - 53 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018060/ DO - 10.1051/m2an/2018060 LA - en ID - M2AN_2019__53_2_443_0 ER -
%0 Journal Article %A Chartier, Philippe %A Le Treust, Loïc %A Méhats, Florian %T Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 443-473 %V 53 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018060/ %R 10.1051/m2an/2018060 %G en %F M2AN_2019__53_2_443_0
Chartier, Philippe; Le Treust, Loïc; Méhats, Florian. Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 443-473. doi : 10.1051/m2an/2018060. http://www.numdam.org/articles/10.1051/m2an/2018060/
[1] Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. | DOI | MR | Zbl
,[2] Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273 (2015) 182-204. | DOI | MR | Zbl
, , and ,[3] Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14 (2014) 689–720 | DOI | MR | Zbl
, , and ,[4] Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. R. Soc. Lond. Ser. A 472 (2016) 20150733, 18. | MR | Zbl
, , and ,[5] On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. | DOI | MR | Zbl
, and ,[6] Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25 (2003) 27–64. | DOI | MR | Zbl
, and ,[7] Relaxation scheme for time dependent nonlinear Schrödinger equations. In: Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000). SIAM, Philadelphia, PA (2000) 605–609. | MR | Zbl
,[8] Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. | DOI | MR | Zbl
, and ,[9] An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11 (2013) 1228-1260. | DOI | MR | Zbl
, and ,[10] Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82 (2012) 1559–1576. | DOI | MR | Zbl
, , and ,[11] A splitting approach for the magnetic Schrödinger equation. J. Comput. Appl. Math. 316 (2017) 74–85. | DOI | MR | Zbl
, and ,[12] Semi-classical Analysis for Nonlinear Schrödinger Equations. World Scientific, Singapore (2008). | DOI | MR | Zbl
,[13] On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51 (2013) 3232–3258. | DOI | MR | Zbl
,[14] Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25 (2012) 2843–2873. | DOI | MR | Zbl
, and ,[15] An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C. R. Acad. Sci., Paris 345 (2007) 531–536. | DOI | MR | Zbl
, and ,[16] Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277–288. | DOI | MR | Zbl
, and ,[17] An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT. Numer. Math. 50 (2010) 729–749. | DOI | MR | Zbl
and ,[18] The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2013) 722–745. | DOI | MR | Zbl
and ,[19] On the error propagation of semi-Lagrange and Fourier methods for advection problems. Comput. Math. Appl. 69 (2015) 170–179. | DOI | MR | Zbl
and ,[20] Partial Differential Equations. American Mathematical Society, Providence, RI (1998). | MR | Zbl
,[21] Computing semiclassical quantum dynamics with Hagedorn wavepackets. SIAM J. Sci. Comput. 31 (2009) 3027–3041. | DOI | MR | Zbl
, and ,[22] A Poisson integrator for Gaussian wavepacket dynamics. Comput. Vis. Sci. 9 (2006) 45–55. | DOI | MR | Zbl
and ,[23] Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation. Numer. Math. 126 (2014) 53–73. | DOI | MR | Zbl
and ,[24] Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82 (2012) 13. | Zbl
, and ,[25] Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. | DOI | MR | Zbl
, and ,[26] On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377–400. | DOI | MR | Zbl
, and ,[27] Perturbation Theory for Linear Operators, Classics in Mathematics. Reprint of the 1980 edition. Springer-Verlag, Berlin (1995). | DOI | MR | Zbl
,[28] Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41 (1988) 891–907. | DOI | MR | Zbl
and ,[29] On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. | DOI | MR | Zbl
,[30] Quanten theorie in hydrodynamischer form. Zeit. F. Phys. 40 (1927) 322–326. | DOI | JFM
,[31] Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108–125. | DOI | MR | Zbl
and ,[32] Semigroups of linear operators and applications to partial differential equations. In Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | DOI | MR | Zbl
,[33] Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6 (1986) 25–42. | DOI | MR | Zbl
and ,[34] Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. | DOI | MR | Zbl
and ,[35] Dufort-Frankel-type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33 (1996) 1526–1533. | DOI | MR | Zbl
,[36] Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. | DOI | MR
,Cité par Sources :