Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 443-473.

This article is devoted to the construction of numerical methods which remain insensitive to the smallness of the semiclassical parameter for the linear Schrödinger equation in the semiclassical limit. We specifically analyse the convergence behavior of the first-order splitting. Our main result is a proof of uniform accuracy. We illustrate the properties of our methods with simulations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018060
Classification : 35Q55, 35F21, 65M99, 76A02, 76Y05, 81Q20, 82D50
Mots-clés : Schrödinger equation, semiclassical limit, numerical simulation, uniformly accurate, Madelung transform, splitting schemes
Chartier, Philippe 1 ; Le Treust, Loïc 1 ; Méhats, Florian 1

1
@article{M2AN_2019__53_2_443_0,
     author = {Chartier, Philippe and Le Treust, Lo{\"\i}c and M\'ehats, Florian},
     title = {Uniformly accurate time-splitting methods for the semiclassical linear {Schr\"odinger} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {443--473},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018060},
     zbl = {1431.35166},
     mrnumber = {3942175},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018060/}
}
TY  - JOUR
AU  - Chartier, Philippe
AU  - Le Treust, Loïc
AU  - Méhats, Florian
TI  - Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 443
EP  - 473
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018060/
DO  - 10.1051/m2an/2018060
LA  - en
ID  - M2AN_2019__53_2_443_0
ER  - 
%0 Journal Article
%A Chartier, Philippe
%A Le Treust, Loïc
%A Méhats, Florian
%T Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 443-473
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018060/
%R 10.1051/m2an/2018060
%G en
%F M2AN_2019__53_2_443_0
Chartier, Philippe; Le Treust, Loïc; Méhats, Florian. Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 443-473. doi : 10.1051/m2an/2018060. http://www.numdam.org/articles/10.1051/m2an/2018060/

[1] G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. | DOI | MR | Zbl

[2] W. Auzinger, H. Hofstätter, O. Koch and M. Thalhammer, Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case. J. Comput. Appl. Math. 273 (2015) 182-204. | DOI | MR | Zbl

[3] P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Effective approximation for the semiclassical Schrödinger equation. Found. Comput. Math. 14 (2014) 689–720 | DOI | MR | Zbl

[4] P. Bader, A. Iserles, K. Kropielnicka and P. Singh, Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. R. Soc. Lond. Ser. A 472 (2016) 20150733, 18. | MR | Zbl

[5] W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. | DOI | MR | Zbl

[6] W. Bao, S. Jin and P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25 (2003) 27–64. | DOI | MR | Zbl

[7] C. Besse, Relaxation scheme for time dependent nonlinear Schrödinger equations. In: Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000). SIAM, Philadelphia, PA (2000) 605–609. | MR | Zbl

[8] C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. | DOI | MR | Zbl

[9] C. Besse, R. Carles and F. Méhats, An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11 (2013) 1228-1260. | DOI | MR | Zbl

[10] S. Blanes, F. Casas, P. Chartier and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82 (2012) 1559–1576. | DOI | MR | Zbl

[11] M. Caliari, A. Ostermann and C. Piazzola, A splitting approach for the magnetic Schrödinger equation. J. Comput. Appl. Math. 316 (2017) 74–85. | DOI | MR | Zbl

[12] R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations. World Scientific, Singapore (2008). | DOI | MR | Zbl

[13] R. Carles, On Fourier time-splitting methods for nonlinear Schrödinger equations in the semiclassical limit. SIAM J. Numer. Anal. 51 (2013) 3232–3258. | DOI | MR | Zbl

[14] R. Carles, R. Danchin and J.-C. Saut, Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25 (2012) 2843–2873. | DOI | MR | Zbl

[15] P. Degond, S. Gallego and F. Méhats, An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C. R. Acad. Sci., Paris 345 (2007) 531–536. | DOI | MR | Zbl

[16] M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277–288. | DOI | MR | Zbl

[17] S. Descombes and M. Thalhammer, An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT. Numer. Math. 50 (2010) 729–749. | DOI | MR | Zbl

[18] S. Descombes and M. Thalhammer, The Lie–Trotter splitting for nonlinear evolutionary problems with critical parameters: a compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2013) 722–745. | DOI | MR | Zbl

[19] L. Einkemmer and A. Ostermann, On the error propagation of semi-Lagrange and Fourier methods for advection problems. Comput. Math. Appl. 69 (2015) 170–179. | DOI | MR | Zbl

[20] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[21] E. Faou, V. Gradinaru and C. Lubich, Computing semiclassical quantum dynamics with Hagedorn wavepackets. SIAM J. Sci. Comput. 31 (2009) 3027–3041. | DOI | MR | Zbl

[22] E. Faou and C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics. Comput. Vis. Sci. 9 (2006) 45–55. | DOI | MR | Zbl

[23] V. Gradinaru and G.A. Hagedorn, Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation. Numer. Math. 126 (2014) 53–73. | DOI | MR | Zbl

[24] N. Risebro, H. Holden and C. Lubich, Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82 (2012) 13. | Zbl

[25] S. Jin, P. Markowich and C. Sparber, Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121–209. | DOI | MR | Zbl

[26] O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377–400. | DOI | MR | Zbl

[27] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Reprint of the 1980 edition. Springer-Verlag, Berlin (1995). | DOI | MR | Zbl

[28] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41 (1988) 891–907. | DOI | MR | Zbl

[29] C. Lubich, On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. | DOI | MR | Zbl

[30] E. Madelung, Quanten theorie in hydrodynamischer form. Zeit. F. Phys. 40 (1927) 322–326. | DOI | JFM

[31] D. Pathria and J.L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108–125. | DOI | MR | Zbl

[32] A. Pazy, Semigroups of linear operators and applications to partial differential equations. In Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | DOI | MR | Zbl

[33] J.M. Sanz-Serna and J.G. Verwer, Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6 (1986) 25–42. | DOI | MR | Zbl

[34] J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. | DOI | MR | Zbl

[35] L. Wu, Dufort-Frankel-type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33 (1996) 1526–1533. | DOI | MR | Zbl

[36] H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. | DOI | MR

Cité par Sources :