Numerical complete solution for random genetic drift by energetic variational approach
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 615-634.

In this paper, we focus on numerical solutions for random genetic drift problem, which is governed by a degenerated convection-dominated parabolic equation. Due to the fixation phenomenon of genes, Dirac delta singularities will develop at boundary points as time evolves. Based on an energetic variational approach (EnVarA), a balance between the maximal dissipation principle (MDP) and least action principle (LAP), we obtain the trajectory equation. In turn, a numerical scheme is proposed using a convex splitting technique, with the unique solvability (on a convex set) and the energy decay property (in time) justified at a theoretical level. Numerical examples are presented for cases of pure drift and drift with semi-selection. The remarkable advantage of this method is its ability to catch the Dirac delta singularity close to machine precision over any equidistant grid.

DOI : 10.1051/m2an/2018058
Classification : 35K65, 92D10, 76M28, 76M30
Mots-clés : Random genetic drift, wright-fisher model, energetic variational approach, convex splitting scheme, Dirac delta singularity, fixation phenomenon
Duan, Chenghua 1 ; Liu, Chun 1 ; Wang, Cheng 1 ; Yue, Xingye 1

1
@article{M2AN_2019__53_2_615_0,
     author = {Duan, Chenghua and Liu, Chun and Wang, Cheng and Yue, Xingye},
     title = {Numerical complete solution for random genetic drift by energetic variational approach},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {615--634},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018058},
     zbl = {1418.65150},
     mrnumber = {3945576},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018058/}
}
TY  - JOUR
AU  - Duan, Chenghua
AU  - Liu, Chun
AU  - Wang, Cheng
AU  - Yue, Xingye
TI  - Numerical complete solution for random genetic drift by energetic variational approach
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 615
EP  - 634
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018058/
DO  - 10.1051/m2an/2018058
LA  - en
ID  - M2AN_2019__53_2_615_0
ER  - 
%0 Journal Article
%A Duan, Chenghua
%A Liu, Chun
%A Wang, Cheng
%A Yue, Xingye
%T Numerical complete solution for random genetic drift by energetic variational approach
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 615-634
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018058/
%R 10.1051/m2an/2018058
%G en
%F M2AN_2019__53_2_615_0
Duan, Chenghua; Liu, Chun; Wang, Cheng; Yue, Xingye. Numerical complete solution for random genetic drift by energetic variational approach. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 615-634. doi : 10.1051/m2an/2018058. http://www.numdam.org/articles/10.1051/m2an/2018058/

R. Barakat and D. Wagener, Solutions of the forward diallelic diffusion equation in population genetics. Math. Biosci. 41 (1978) 65–79. | DOI | MR | Zbl

A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46 (2008) 691–721. | DOI | MR | Zbl

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, Cambridge (2004). | DOI | MR | Zbl

J.A. Carrillo and J.S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009) 4305–4329. | DOI | MR | Zbl

J.A. Carrillo, H. Ranetbauer and M.-T. Wolfram, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys. 327 (2016) 186–202. | DOI | MR | Zbl

M. Chen, C. Liu. S. Xu, X. Yue and R. Zhang, Behavior of different numerical schemes for population genetic drift problems. Preprint arXiv:1410.5527 (2018). | MR | Zbl

J.F. Crow and M. Kimura, An introduction to population genetics theory. Population (French Edition) 26 (1971) 977–978.

Q. Du, C. Liu, R. Ryham and X. Wang, Energetic variational approaches in modeling vesicle and fluid interactions. Phys. D 238 (2009) 923–930. | DOI | MR | Zbl

C. Duan, C. Liu, C. Wang and X. Yue, Numerical methods for porous medium equation by an energetic variational approach. Preprint arXiv:1806.10775 (2018). | MR | Zbl

B. Eisenberg, Y.K. Hyon and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133 (2010) 104104. | DOI

D.J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation. MRS Proceedings. Cambridge Univ. Press 529 (1998) 39. | DOI | MR

L. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat fows. SIAM J. Math. Anal. 37 (2005) 737–751. | DOI | MR | Zbl

R.A. Fisher, On the dominance ratio. Proc. R. Soc. Edinburgh 42 (1922) 321–431. | DOI

R.A. Fisher, The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930). | DOI | JFM

L. Gosse and G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput. 28 (2006) 1203–1227. | DOI | MR | Zbl

L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590–2606. | DOI | MR | Zbl

M. Kimura, Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harb. Symp. Quant. Biol. 20 (1955) 33–53. | DOI

M. Kimura, Random genetic drift in multi-allelic locus. Evolution 9 (1955) 419–435. | DOI

M. Kimura, On the probability of fixation of mutant genes in a population. Genetics 47 (1962) 713. | DOI

M. Kimura, Diffusion models in population genetics. J. Appl. Probab. 1 (1964) 177–232. | DOI | MR | Zbl

M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge (1983). | DOI

R. Kubo, Thermodynamics: An Advanced Course with Problems and Solutions. North-Holland Pub. Co., Amsterdam (1976). | Zbl

A.J. Mckane and D. Waxman, Sigular solution of the diffusion equation of population genetics. J. Theor. Biol. 247 (2007) 849–858. | DOI | MR | Zbl

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming. SIAM, Pjiladelphia, PA 13 (1994). | DOI | MR | Zbl

L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (1931) 2265–2279. | DOI | Zbl

L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37 (1931) 405. | DOI | JFM | Zbl

J.W. Strutt, Some general theorems relating to vibrations. Proc. Lond. Math. Soc. 4 (1873) 357–368. | JFM | MR

T.D. Tran, J. Hofrichter and J. Jost, An introduction to the mathematical structure of the Wright Fisher model of population genetics. Theory Biosci. 132 (2013) 73–82. | DOI

A. Traulsen, T. Lenaerts, J.M. Pacheco and D. Dingli, On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population. J. R. Soc. Interface 10 (2013) 20120810. | DOI

J.L. Vázquez, The Porous Medium Equation: Mathematical Theory. Oxford Univ. Press, Oxford (2007). | MR | Zbl

Y. Wang and B. Rannala, A novel solution for the time-dependent probability of gene fixation or loss under natural selection. Genetics 168 (2004) 1081–1084. | DOI

D. Waxman, Fixation at a locus with multiple alleles: structure and solution of the Wright-Fisher model. J. Theor. Biol. 257 (2009) 245–251. | DOI | MR | Zbl

M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133–166. | DOI | Numdam | MR | Zbl

S. Wright, The differential equation of the distribution of gene frequencies. PNAS 31 (1945) 382–389. | DOI | MR | Zbl

X.F. Yang, J.J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218 (2006) 417–428. | DOI | MR | Zbl

L. Zhao, X. Yue and D. Waxman, Complete numerical solution of the diffusion equation of random genetic drift. Genetics 194 (2013) 973–985. | DOI

Cité par Sources :