Convergence of discrete and continuous unilateral flows for Ambrosio–Tortorelli energies and application to mechanics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 659-699.

We study the convergence of an alternate minimization scheme for a Ginzburg–Landau phase-field model of fracture. This algorithm is characterized by the lack of irreversibility constraints in the minimization of the phase-field variable; the advantage of this choice, from a computational stand point, is in the efficiency of the numerical implementation. Irreversibility is then recovered a posteriori by a simple pointwise truncation. We exploit a time discretization procedure, with either a one-step or a multi (or infinite)-step alternate minimization algorithm. We prove that the time-discrete solutions converge to a unilateral L2-gradient flow with respect to the phase-field variable, satisfying equilibrium of forces and energy identity. Convergence is proved in the continuous (Sobolev space) setting and in a discrete (finite element) setting, with any stopping criterion for the alternate minimization scheme. Numerical results show that the multi-step scheme is both more accurate and faster. It provides indeed good simulations for a large range of time increments, while the one-step scheme gives comparable results only for very small time increments.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018057
Classification : 49S05, 74A45
Mots-clés : Gradient flows, phase-field fracture
Almi, S. 1 ; Belz, S. 1 ; Negri, M. 1

1
@article{M2AN_2019__53_2_659_0,
     author = {Almi, S. and Belz, S. and Negri, M.},
     title = {Convergence of discrete and continuous unilateral flows for {Ambrosio{\textendash}Tortorelli} energies and application to mechanics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {659--699},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018057},
     mrnumber = {3945577},
     zbl = {1421.49033},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018057/}
}
TY  - JOUR
AU  - Almi, S.
AU  - Belz, S.
AU  - Negri, M.
TI  - Convergence of discrete and continuous unilateral flows for Ambrosio–Tortorelli energies and application to mechanics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 659
EP  - 699
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018057/
DO  - 10.1051/m2an/2018057
LA  - en
ID  - M2AN_2019__53_2_659_0
ER  - 
%0 Journal Article
%A Almi, S.
%A Belz, S.
%A Negri, M.
%T Convergence of discrete and continuous unilateral flows for Ambrosio–Tortorelli energies and application to mechanics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 659-699
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018057/
%R 10.1051/m2an/2018057
%G en
%F M2AN_2019__53_2_659_0
Almi, S.; Belz, S.; Negri, M. Convergence of discrete and continuous unilateral flows for Ambrosio–Tortorelli energies and application to mechanics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 659-699. doi : 10.1051/m2an/2018057. http://www.numdam.org/articles/10.1051/m2an/2018057/

S. Almi and S. Belz, Consistent finite-dimensional approximation of phase-field models of fracture. Ann. Mat. doi: 10.1007/s10231-018-0815-z (2018). | MR | Zbl

M. Ambati, T. Gerasimov and L. De Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comp. Mech. 55 (2015) 383–405. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, NY (2000). | DOI | MR | Zbl

L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. 2nd edition. Birkhäuser Verlag, Basel (2008). | MR | Zbl

L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 7 (1992) 105–123. | MR | Zbl

M. Artina, F. Cagnetti, M. Fornasier and F. Solombrino, Linearly constrained evolutions of critical points and an application to cohesive fractures. Math. Models Methods Appl. Sci. 27 (2017) 231–290. | DOI | MR | Zbl

M. Artina, M. Fornasier, S. Micheletti and S. Perotto, Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J. Sci. Comput. 37 (2015) B633–B659. | DOI | MR | Zbl

J.-F. Babadjian and V. Millot, Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 779–822. | DOI | Numdam | MR | Zbl

G. Bellettini and A. Coscia, Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201–224. | DOI | MR | Zbl

G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Ω). Math. Z. 228 (1998) 337–351. | DOI | MR | Zbl

B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | DOI | MR | Zbl

B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture. Interf. Free Bound. 9 (2007) 411–430. | DOI | MR | Zbl

S. Burke, C. Ortner and E. Süli, An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal. 48 (2010) 980–1012. | DOI | MR | Zbl

A. Chambolle, An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2004) 929–954. | DOI | MR | Zbl

P.G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2 (1973) 17–31. | DOI | MR | Zbl

P.G. Ciarlet, The finite element method for elliptic problems. In Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). | DOI | MR | Zbl

G. Dal Maso and R. Toader, On a notion of unilateral slope for the Mumford-Shah functional. NoDEA Nonlinear Differ. Equ. Appl. 13 (2007) 713–734. | DOI | MR | Zbl

G. Dal Maso, Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. | DOI | MR | Zbl

G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165–225. | DOI | MR | Zbl

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer Monographs in Mathematics. Springer, New York, NY (2007). | MR | Zbl

G.A. Francfort, N.Q. Le and S. Serfaty, Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case. ESAIM: COCV 15 (2009) 576–598. | Numdam | MR | Zbl

F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

R. Herzog, C. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382 (2011) 802–813. | DOI | MR | Zbl

F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51 (2014) 315–342. | DOI | MR | Zbl

D. Knees and M. Negri, Convergence of alternate minimization schemes for phase-field fracture and damage. Math. Models Methods Appl. Sci. 27 (2017) 1743–1794. | DOI | MR | Zbl

D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. | DOI | MR | Zbl

G. Lazzaroni, R. Rossi, M. Thomas and R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia. J. Dyn. Differ. Equ. 30 (2018) 1311–1364. | DOI | MR | Zbl

C. Miehe, F. Welschinger and M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83 (2010) 1273–1311. | DOI | MR | Zbl

A. Mielke and T. Roubíček, Rate-independent systems: theory and application. In Vol. 193 of Applied Mathematical Sciences. Springer, New York, NY (2015). | DOI | MR

A. Mielke, Evolution of rate-independent systems. In: Evolutionary Equations II. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam (2005) 461–559. | MR | Zbl

M. Negri, A unilateral L2 gradient flow and its quasi-static limit in phase-field fracture by alternate minimization. Adv. Calc. Var. online first in press. | MR | Zbl

G. Strang and G.J. Fix, An Analysis of the Finite Element Method. 2nd edition. Cambridge Press, Wellesley, MA (2008). | MR | Zbl

T. Takaishi and M. Kimura, Phase field model for mode III crack growth in two dimensional elasticity. Kybernetika (Prague) 45 (2009) 605–614. | MR | Zbl

Cité par Sources :