The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 325-350.

We show existence and uniqueness of the outgoing solution for the Maxwell problem with an impedance boundary condition of Leontovitch type in a half-space. Due to the presence of surface waves guided by an infinite surface, the established radiation condition differs from the classical one when approaching the boundary of the half-space. This specific radiation pattern is derived from an accurate asymptotic analysis of the Green’s dyad associated to this problem.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018055
Classification : 35J08, 35Q6, 35P25, 74J15, 74J20
Mots-clés : Maxwell equations, half-space, surface waves, radiation condition
Rojas, Sergio 1 ; Muga, Ignacio 1 ; Jerez-Hanckes, Carlos 1

1
@article{M2AN_2019__53_1_325_0,
     author = {Rojas, Sergio and Muga, Ignacio and Jerez-Hanckes, Carlos},
     title = {The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {325--350},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018055},
     zbl = {1422.35019},
     mrnumber = {3938845},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018055/}
}
TY  - JOUR
AU  - Rojas, Sergio
AU  - Muga, Ignacio
AU  - Jerez-Hanckes, Carlos
TI  - The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 325
EP  - 350
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018055/
DO  - 10.1051/m2an/2018055
LA  - en
ID  - M2AN_2019__53_1_325_0
ER  - 
%0 Journal Article
%A Rojas, Sergio
%A Muga, Ignacio
%A Jerez-Hanckes, Carlos
%T The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 325-350
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018055/
%R 10.1051/m2an/2018055
%G en
%F M2AN_2019__53_1_325_0
Rojas, Sergio; Muga, Ignacio; Jerez-Hanckes, Carlos. The outgoing time-harmonic electromagnetic wave in a half-space with non-absorbing impedance boundary condition. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 325-350. doi : 10.1051/m2an/2018055. http://www.numdam.org/articles/10.1051/m2an/2018055/

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. In Vol. 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents. U.S. Government Printing Office. Washington, DC (1964). | MR | Zbl

H. Ammari and S. He, Generalized effective impedance boundary conditions for an inhomogeneous thin layer in electromagnetic scattering. J. Electromagn. Waves Appl. 11 (1997) 1197–1212. | DOI | Zbl

H. Ammari and C. Latiri-Grouz, An integral equation method for the electromagnetic scattering from a scatterer on an absorbing plane. Integr. Equ. Oper. Theory 39 (2001) 159–181. | DOI | MR | Zbl

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, The Leontovich boundary value problem for the time-harmonic Maxwell equations. Asymptot. Anal. 18 (1998) 33–47. | MR | Zbl

H. Ammari, C. Latiri-Grouz and J.-C. Nédélec, Scattering of Maxwell’s equations with a Leontovich boundary condition in an inhomogeneous medium: a singular perturbation problem. SIAM J. Appl. Math. 59 (1999) 1322–1334. | DOI | MR | Zbl

H. Ammari and J.-C. Nédélec, Generalized impedance boundary conditions for the Maxwell equations as singular perturbations problems. Comm. Partial Differ. Equ. 24 (1999) 821–849. | DOI | MR | Zbl

C.A. Balanis, Advanced Engineering Electromagnetics. 2nd edition. John Wiley & Sons, Hoboken, NJ (2012).

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664–1693. | DOI | MR | Zbl

A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57 (2008) 199–227. | MR | Zbl

M. Cessenat, Mathematical methods in electromagnetism : linear theory and applications. Series on Advances in Mathematics for Applied Sciences. World Scientific, Singapore (1996). | DOI | MR | Zbl

D. Colton and R. Kress, The impedance boundary value problem for the time harmonic Maxwell equations. Math. Methods Appl. Sci. 3 (1981) 475–487. | DOI | MR | Zbl

D.L. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Originally published: Wiley, New York, c1983. Krieger Pub. Co, Malabar, FL (1992). | Zbl

M. Durán, I. Muga and J.-C. Nédélec, The Helmholtz equation in a locally perturbed half-space with non-absorbing boundary. Arch. Ration. Mech. Anal. 191 (2009) 143–172. | DOI | MR | Zbl

B. Engquist and J.-C. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers. Technical Report 278. Ecole Polytechnique-CMAP, France (1993).

L.C. Evans, Partial differential equations. 2nd edition. In Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

V. Girault and P.-A. Raviart Finite element methods for Navier–Stokes equations. Theory and algorithms. In Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | DOI | MR | Zbl

H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. | DOI | MR | Zbl

J.G. Harris, Linear Elastic Waves. Cambridge University Press, Cambridge 26 (2001). | MR | Zbl

C. Jerez-Hanckes, Modeling elastic and electromagnetic surface waves in piezoeletric transducers and optical waveguides. Ph.D. thesis, École Polytechnique (2008).

C. Jerez-Hanckes and J.-C. Nédélec, Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides. Technical Report 2010-07. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2010). | MR

C. Jerez-Hanckes and J.-C. Nédélec, Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides. Commun. Comput. Phys. 11 (2012) 629–646. | DOI | MR | Zbl

E.G. Loewen and E. Popov, Diffraction Gratings and Applications. CRC Press, Boca Raton, FL (1997).

P. Monk, Finite element methods for Maxwell’s equations. In: Numerical Mathematics and Scientific Computation. Oxford University Press, New York, NY (2003). | DOI | MR | Zbl

C. Müller, Foundations of the mathematical theory of electromagnetic waves. Revised and enlarged translation from the German. In Vol. 155 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Heidelberg, 1969. | MR | Zbl

Y. Nam, Y.X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić and E.N. Wang, Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Sol. Energy Mater. Sol. Cells 122 (2014) 287–296. | DOI

S. Rojas, R. Hein and M. Durán, On an equivalent representation of the Green’s function for the Helmholtz problem in a non-absorbing impedance half-plane. Comput. Math. App. 75 (2018) 3903–3917. | MR | Zbl

W. Rudin, Real and Complex Analysis. 3rd edition. McGraw-Hill Book Co., New York, NY, 1987. | MR | Zbl

V. Stelmakh, W.R. Chan, J.D. Joannopoulos, M. Soljačić and I. Celanovic, Sputtered tantalum photonic crystal coatings for high-temperature energy conversion applications. IEEE-NANO 2015–15th Int. Conf. Nanotechnol. 15 (2016) 1134–1137.

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. In Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer Science & Business Media, Berlin (2007). | MR | Zbl

L.P. Wang and Z.M. Zhang, Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Appl. Phys. Lett. 100 (2012) 63902. | DOI

Cité par Sources :