A splitting method adapted to the simulation of mixed flows in pipes with a compressible two-layer model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 405-442.

The numerical resolution of the Compressible Two-Layer model proposed in [27] is addressed in this work with the aim of simulating mixed flows and entrapped air pockets in pipes. This five-equation model provides a unified two-phase description of such flows which involve transitions between stratified regimes (air–water herein) and pressurized or dry regimes (pipe full of water or air). In particular, strong interactions between both phases and entrapped air pockets are accounted for. At the discrete level, the coexistence of slow gravity waves in the stratified regime with fast acoustic waves in the pressurized regime is difficult to approximate. Furthermore, the two-phase description requires to deal with vanishing phases in pressurized and dry regimes. In that context, a robust splitting method combined with an implicit-explicit time discretization is derived. The overall strategy relies on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the water phase. It results in a three-step scheme which ensures the positivity of heights and densities under a CFL condition based on the celerity of material and gravity waves. In that framework, an implicit relaxation-like approach provides stabilization terms which are activated according to the flow regime. Numerical experiments are performed beginning with a Riemann problem for the convective part. The overall approach is then assessed considering relevant mixed flow configurations involving regime transitions, vanishing phases and entrapped air pockets.

DOI : 10.1051/m2an/2018051
Classification : 35Q35, 65M08, 76T10, 76M12
Mots-clés : two-layer model, hyperbolic model, mixed flow, splitting method, implicit-explicit scheme
Demay, Charles 1 ; Bourdarias, Christian 1 ; de Laage de Meux, Benoît 1 ; Gerbi, Stéphane 1 ; Hérard, Jean-Marc 1

1
@article{M2AN_2019__53_2_405_0,
     author = {Demay, Charles and Bourdarias, Christian and de Laage de Meux, Beno{\^\i}t and Gerbi, St\'ephane and H\'erard, Jean-Marc},
     title = {A splitting method adapted to the simulation of mixed flows in pipes with a compressible two-layer model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {405--442},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018051},
     zbl = {1433.35263},
     mrnumber = {3942177},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018051/}
}
TY  - JOUR
AU  - Demay, Charles
AU  - Bourdarias, Christian
AU  - de Laage de Meux, Benoît
AU  - Gerbi, Stéphane
AU  - Hérard, Jean-Marc
TI  - A splitting method adapted to the simulation of mixed flows in pipes with a compressible two-layer model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 405
EP  - 442
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018051/
DO  - 10.1051/m2an/2018051
LA  - en
ID  - M2AN_2019__53_2_405_0
ER  - 
%0 Journal Article
%A Demay, Charles
%A Bourdarias, Christian
%A de Laage de Meux, Benoît
%A Gerbi, Stéphane
%A Hérard, Jean-Marc
%T A splitting method adapted to the simulation of mixed flows in pipes with a compressible two-layer model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 405-442
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018051/
%R 10.1051/m2an/2018051
%G en
%F M2AN_2019__53_2_405_0
Demay, Charles; Bourdarias, Christian; de Laage de Meux, Benoît; Gerbi, Stéphane; Hérard, Jean-Marc. A splitting method adapted to the simulation of mixed flows in pipes with a compressible two-layer model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 405-442. doi : 10.1051/m2an/2018051. http://www.numdam.org/articles/10.1051/m2an/2018051/

[1] V.I. Agoshkov, D. Ambrosi, V. Pennati, A. Quarteroni and F. Saleri, Mathematical and numerical modelling of shallow water flow. Comput. Mech. 11 (1993) 280-299. | DOI | MR | Zbl

[2] A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009), 1063-1097. | DOI | Numdam | MR | Zbl

[3] A. Ambroso, C. Chalons and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. fluids 54 (2012), 67-91. | DOI | MR | Zbl

[4] K. Arai and K. Yamamoto, Transient analysis of mixed free- surface-pressurized flows with modified slot model (part 1: Computational model and experiment). In: Proc. FEDSM03 4th ASME-JSME Joint Fluids Engineering Conf. (2003) 2907-2913.

[5] F. Aureli, A. Dazzi, A. Maranzoni and P. Mignosa, Validation of single- and two-equation models for transient mixed flows: a laboratory test case. J. Hydraul. Res. 53 (2015) 440-451. | DOI

[6] M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials. Int. J. Multiph. Flow 12 (1986), 861-889. | DOI | Zbl

[7] A.J.C. Barré De Saint Venant, Théorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871), 147-154. | JFM

[8] C. Berthon, B. Braconnier and B. Nkonga, Numerical approximation of a degenerate non-conservative multifluid model: relaxation scheme. Int. J. Numer. Methods Fluids 48 (2005), 85-90. | DOI | Zbl

[9] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Birkhauser (2004). | DOI | MR | Zbl

[10] C. Bourdarias, M. Ersoy and S. Gerbi, Unsteady flows in non uniform closed water pipes: a full kinetic approach. Numer. Math. 128 (2014) 217-263. | DOI | MR | Zbl

[11] C. Bourdarias, S. Gerbi, A finite volume scheme for a model coupling free surface and pressurised flows in pipes. J. Comput. Appl. Math. 209 (2007), 1-47. | DOI | MR | Zbl

[12] S. Bousso, M. Daynou and M. Fuamba, Numerical modeling of mixed flows in storm water systems: Critical review of literature. J. Hydraul. Eng. 139 (2013) 385-396 | DOI

[13] R.P. Brent, An algorithm with guaranteed convergence for finding a zero of a function. Comput. J. 14 (1971) 422-425. | DOI | MR | Zbl

[14] H. Capart, X. Sillen and Y. Zech, Numerical and experimental water transients in sewer pipes. J. Hydraul. Res. 35 (1997) 659-672. | DOI

[15] J.A. Cardle, C.C.S. Song and M. Yuan, Measures of mixed transient flows. J. Hydraul. Eng. 115 (1989) 169-182. | DOI

[16] C. Chalons, F. Coquel, S. Kokh and N. Spillane, Large time-step numerical scheme for the seven-equation model of compressible two-phase flows. Springer Proc. Math. 4 (2011) 225-233. | DOI | MR | Zbl

[17] C. Chalons, M. Girardin and S. Kokh, Large time-step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput. 35 (2013) a2874-a2902. | DOI | MR | Zbl

[18] F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272-288. | DOI | MR | Zbl

[19] F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C.R. Acad. Sci. Paris 334 (2002) 927-932. | DOI | MR | Zbl

[20] F. Coquel, E. Godlewski and N. Seguin, Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012) 1250014. | DOI | MR | Zbl

[21] F. Coquel, J.-M. Hérard and K. Saleh, A splitting method for the isentropic Baer-Nunziato two-phase flow model. ESAIM: Proc. 38 (2012) 241-256. | DOI | MR | Zbl

[22] F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330 (2017) 401-435. | DOI | MR | Zbl

[23] F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: M2AN 48 (2013) 165-206. | DOI | Numdam | MR | Zbl

[24] J.-A. Cunge and M. Wegner, Numerical integration of barré de Saint-Venant’s flow equations by means of an implicit scheme of finite differences. La Houille Blanche 1 (1964) 33-39.

[25] C. Demay, Modelling and simulation of transient air-water two-phase flows in hydraulic pipes. Ph.D. thesis, Université Savoie Mont Blanc. Available at: https://tel.archives-ouvertes.fr/tel-01651078 (2017).

[26] C. Demay, C. Bourdarias, B. De Laage De Meux, S. Gerbi and J.-M. Hérard, Numerical simulation of a compressible two-layer model: a first attempt with an implicit-explicit splitting scheme J. Comput. Appl. Math. 346 (2019) 357-377. | DOI | MR | Zbl

[27] C. Demay and J.-M. Hérard, A compressible two-layer model for transient gas-liquid flows in pipes. Contin. Mech. Thermodyn. 29 (2017) 385-410. | DOI | MR | Zbl

[28] G. Dimarco, R. Loubère and M.-H. Vignal, Study of a new asymptotic preserving scheme for the euler system in the low Mach number limit. SIAM J. Sci. Comput. 39 (2017) A2099-A2128. | DOI | MR | Zbl

[29] M. Ferrari, A. Bonzanini and P. Poesio, A 5-equation, transient, hyperbolic, 1-dimensional model for slug capturing in pipes. Int. J. Numer. Methods Fluids 85 (2017) 327-362. | DOI | MR

[30] T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663-700. | DOI | MR | Zbl

[31] S.L. Gavrilyuk, The structure of pressure relaxation terms: one-velocity case. EDF Report H-I83-2014-00276-EN (2014).

[32] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR | Zbl

[33] E. Godlewski, M. Parisot, J. Sainte-Marie and F. Wahl, Congested shallow water model roof modelling in free surface flow. ESAIM: M2AN 52 (2018) 1679-1707. | DOI | Numdam | MR | Zbl

[34] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer, New York (1996). | DOI | MR | Zbl

[35] J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas–liquid flows. Comput. Fluids 55 (2012) 57-69. | DOI | MR | Zbl

[36] D. Iampietro, F. Daude, P. Galon and J.-M. Hérard, A mach-sensitive implicit-explicit scheme adapted to compressible multi-scale flows. J. Comput. Appl. Math. 340 (2018) 122-150. | DOI | MR | Zbl

[37] R.I. Issa and M.H.W. Kempf, Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model. Int. J. Multiph. Flow 29 (2003) 69-95. | DOI | Zbl

[38] F. Kerger, P. Archambeau, S. Erpicum, B.J. Dewals and M. Pirotton, An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows. J. Comput. Appl. Math. 235 (2011) 2030-2040. | DOI | MR | Zbl

[39] D. Lannes, On the dynamics of floating structures. Ann. Partial Differ. Equ. 3 (2017) 11. | MR | Zbl

[40] A.S. Léon, M.S. Ghidaoui, A.R. Schmidt and M.H. Garcia, A robust two-equation model for transient-mixed flows. J. Hydraul. Res. 48 (2010) 44-56. | DOI

[41] A. Line and J. Fabre, Stratified gas liquid flow. Encyclopedia of Heat Transfer (1997) 1097-1101.

[42] H. Lochon, F. Daude, P. Galon and J.-M. Hérard, HLLC-type Riemann solver with approximated two-phase contact for the computation of the Baer-Nunziato two-fluid model. J. Comput. Phys. 326 (2016) 733-762. | DOI | MR | Zbl

[43] L. Ramezani, B. Karney and A. Malekpour, Encouraging effective air management in water pipelines: a critical review. J. Water Resour. Plan. Manage. 142 (2016) 04016055. | DOI

[44] V.H. Ransom and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124-151. | DOI | MR | Zbl

[45] J. Schütz and S. Noelle, Flux splitting for stiff equations: A notion on stability. SIAM J. Sci. Comput. 64 (2015) 522-540. | DOI | MR | Zbl

[46] V.L. Streeter, E.B. Wylie and K.W. Bedford, Fluid Mechanics. McGraw-Hill (1998).

[47] Y. Taitel and A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 22 (1976) 47-55. | DOI

[48] S.-A. Tokareva And E.-F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573-3604. | DOI | MR | Zbl

[49] B.C. Trindade and J.G. Vasconcelos, Modeling of water pipeline filling events accounting for air phase interactions. J. Hydraul. Eng. 139 (2013) 934. | DOI

[50] J.G. Vasconcelos, S.J. Wright and P.L. Roe, Improved simulation of flow regime transition in sewers: two-component pressure approach. J. Hydraul. Eng. 132 (2006) 553-562. | DOI

[51] J.G. Vasconcelos, S.J. Wright and P.L. Roe, Numerical oscillations in pipe-filling bore predictions by shock-capturing models. J. Hydraul. Eng. 135 (2009) 296-305. | DOI

[52] H. And Zakerzadeh and S. Noelle, IGPM Report. 449 (2016).

Cité par Sources :