We study high-order Magnus-type exponential integrators for large systems of ordinary differential equations defined by a time-dependent skew-Hermitian matrix. We construct and analyze defect-based local error estimators as the basis for adaptive stepsize selection. The resulting procedures provide a posteriori information on the local error and hence enable the accurate, efficient, and reliable time integration of the model equations. The theoretical results are illustrated on two numerical examples .
Mots-clés : Non-autonomous linear differential equations, magnus-type integrators, a posteriori local error estimation, asymptotical correctness, adaptive stepsize selection
@article{M2AN_2019__53_1_197_0, author = {Auzinger, Winfried and Hofst\"atter, Harald and Koch, Othmar and Quell, Michael and Thalhammer, Mechthild}, title = {A posteriori error estimation for {Magnus-type} integrators}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {197--218}, publisher = {EDP-Sciences}, volume = {53}, number = {1}, year = {2019}, doi = {10.1051/m2an/2018050}, mrnumber = {3937352}, zbl = {1416.65188}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018050/} }
TY - JOUR AU - Auzinger, Winfried AU - Hofstätter, Harald AU - Koch, Othmar AU - Quell, Michael AU - Thalhammer, Mechthild TI - A posteriori error estimation for Magnus-type integrators JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 197 EP - 218 VL - 53 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018050/ DO - 10.1051/m2an/2018050 LA - en ID - M2AN_2019__53_1_197_0 ER -
%0 Journal Article %A Auzinger, Winfried %A Hofstätter, Harald %A Koch, Othmar %A Quell, Michael %A Thalhammer, Mechthild %T A posteriori error estimation for Magnus-type integrators %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 197-218 %V 53 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018050/ %R 10.1051/m2an/2018050 %G en %F M2AN_2019__53_1_197_0
Auzinger, Winfried; Hofstätter, Harald; Koch, Othmar; Quell, Michael; Thalhammer, Mechthild. A posteriori error estimation for Magnus-type integrators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 197-218. doi : 10.1051/m2an/2018050. http://www.numdam.org/articles/10.1051/m2an/2018050/
High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys. 230 (2011) 5930–5956. | DOI | MR | Zbl
, ,Numerical time propagation of quantum systems in radiation fields, New J. Phys. 14 (2012) 105008. | DOI | Zbl
, , ,Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes, BIT 57 (2017) 55–74. | DOI | MR | Zbl
, , , ,Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II: Higher-order methods for linear problems, J. Comput. Appl. Math. 255 (2013) 384–403. | DOI | MR | Zbl
, , ,Defect-based local error estimators for high-order splitting methods involving three linear operators, Numer. Algorithms 70 (2015) 61–91. | DOI | MR | Zbl
, , ,Effective approximation for the linear time-dependent Schrödinger equation, Found. Comput. Math. 14 (2014) 689–720. | DOI | MR | Zbl
, , , ,Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. R. Soc. A 472 (2016) 20150733. | DOI | MR | Zbl
, , , ,Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod. 6 (2013) 1–135. | DOI | MR | Zbl
, ,New families of symplectic splitting methods for numerical integration in dynamical astronomy, Appl. Numer. Math. 68 (2013) 58–72. | DOI | MR | Zbl
, , , , , ,The Magnus expansion and some of its applications, Phys. Rep. 470 (2008) 151–238. | DOI | MR
, , , ,Improved high order integrators based on the Magnus expansion, BIT 40 (2000) 434–450. | DOI | MR | Zbl
, , ,High-order commutator-free quasi–Magnus integrators for non-autonomous linear evolution equations, Comput. Phys. Commun. 220 (2017) 243–262. | DOI | MR | Zbl
, , ,Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math. 56 (2005) 1519–1537. | DOI | MR | Zbl
, ,A posteriori error estimate and global error control for ordinary differential equations by the adjoint method, SIAM J. Sci. Comput. 26 (2004) 359–374. | DOI | MR | Zbl
, ,Complexity theory for Lie-group solvers, J. Complexity 18 (2002) 242–286. | DOI | MR | Zbl
, , , ,Geometric Numerical Integration. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, (2006). | MR | Zbl
, , ,Solving Ordinary Differential Equations I, Springer-Verlag, Berlin, Heidelberg, New York, (1987). | MR | Zbl
, , ,Electronic structure calculations using dynamical mean field theory, Adv. Phys. 56 (2007) 829–926. | DOI
,Functions of Matrices. Theory and Computations, SIAM, Philadelphia, PA, (2008). | DOI | MR | Zbl
,On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003) 945–963. | DOI | MR | Zbl
, ,Modeling of solar cells by small Hubbard clusters. B.Sc. thesis, Vienna University of Technology (2017).
,Magnus-Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential, SIAM J. Numer. Anal. 56 (2018) 1547–1569. | DOI | MR | Zbl
, , ,On the solution of linear differential equations on Lie groups, Phil. Trans. R. Soc. Lond. A 357 (1999) 983–1019. | DOI | MR | Zbl
, ,Accurate time-propagation of the Schrödinger equation with an explicitly time-dependent Hamiltonian, J. Chem. Phys. 128 (2008) 184101. | DOI
, , ,Global error control of the time-propagation for the Schrödinger equation with a time-dependent Hamiltonian, J. Comput. Sci. 2 (2011) 178–187. | DOI
, , ,From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zurich (2008). | MR | Zbl
,On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954) 649–673. | DOI | MR | Zbl
,A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal. 44 (2006) 851–864. | DOI | MR | Zbl
,Cité par Sources :