A posteriori error estimation for Magnus-type integrators
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 197-218.

We study high-order Magnus-type exponential integrators for large systems of ordinary differential equations defined by a time-dependent skew-Hermitian matrix. We construct and analyze defect-based local error estimators as the basis for adaptive stepsize selection. The resulting procedures provide a posteriori information on the local error and hence enable the accurate, efficient, and reliable time integration of the model equations. The theoretical results are illustrated on two numerical examples .

DOI : 10.1051/m2an/2018050
Classification : 65L05, 65L20, 65L50, 65L70
Mots-clés : Non-autonomous linear differential equations, magnus-type integrators, a posteriori local error estimation, asymptotical correctness, adaptive stepsize selection
Auzinger, Winfried 1 ; Hofstätter, Harald 1 ; Koch, Othmar 1 ; Quell, Michael 1 ; Thalhammer, Mechthild 1

1
@article{M2AN_2019__53_1_197_0,
     author = {Auzinger, Winfried and Hofst\"atter, Harald and Koch, Othmar and Quell, Michael and Thalhammer, Mechthild},
     title = {A posteriori error estimation for {Magnus-type} integrators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {197--218},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018050},
     mrnumber = {3937352},
     zbl = {1416.65188},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018050/}
}
TY  - JOUR
AU  - Auzinger, Winfried
AU  - Hofstätter, Harald
AU  - Koch, Othmar
AU  - Quell, Michael
AU  - Thalhammer, Mechthild
TI  - A posteriori error estimation for Magnus-type integrators
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 197
EP  - 218
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018050/
DO  - 10.1051/m2an/2018050
LA  - en
ID  - M2AN_2019__53_1_197_0
ER  - 
%0 Journal Article
%A Auzinger, Winfried
%A Hofstätter, Harald
%A Koch, Othmar
%A Quell, Michael
%A Thalhammer, Mechthild
%T A posteriori error estimation for Magnus-type integrators
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 197-218
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018050/
%R 10.1051/m2an/2018050
%G en
%F M2AN_2019__53_1_197_0
Auzinger, Winfried; Hofstätter, Harald; Koch, Othmar; Quell, Michael; Thalhammer, Mechthild. A posteriori error estimation for Magnus-type integrators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 197-218. doi : 10.1051/m2an/2018050. http://www.numdam.org/articles/10.1051/m2an/2018050/

A. Alverman, H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys. 230 (2011) 5930–5956. | DOI | MR | Zbl

A. Alverman, H. Fehske, P.B. Littlewood, Numerical time propagation of quantum systems in radiation fields, New J. Phys. 14 (2012) 105008. | DOI | Zbl

W. Auzinger, H. Hofstätter, D. Ketcheson, O. Koch, Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes, BIT 57 (2017) 55–74. | DOI | MR | Zbl

W. Auzinger, O. Koch, M. Thalhammer, Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II: Higher-order methods for linear problems, J. Comput. Appl. Math. 255 (2013) 384–403. | DOI | MR | Zbl

W. Auzinger, O. Koch, M. Thalhammer, Defect-based local error estimators for high-order splitting methods involving three linear operators, Numer. Algorithms 70 (2015) 61–91. | DOI | MR | Zbl

P. Bader, A. Iserles, K. Kropielnicka, P. Singh, Effective approximation for the linear time-dependent Schrödinger equation, Found. Comput. Math. 14 (2014) 689–720. | DOI | MR | Zbl

P. Bader, A. Iserles, K. Kropielnicka, P. Singh, Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential, Proc. R. Soc. A 472 (2016) 20150733. | DOI | MR | Zbl

W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod. 6 (2013) 1–135. | DOI | MR | Zbl

S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, A. Murua, New families of symplectic splitting methods for numerical integration in dynamical astronomy, Appl. Numer. Math. 68 (2013) 58–72. | DOI | MR | Zbl

S. Blanes, F. Casas, J.A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2008) 151–238. | DOI | MR

S. Blanes, F. Casas, J. Ros, Improved high order integrators based on the Magnus expansion, BIT 40 (2000) 434–450. | DOI | MR | Zbl

S. Blanes, F. Casas, M. Thalhammer, High-order commutator-free quasi–Magnus integrators for non-autonomous linear evolution equations, Comput. Phys. Commun. 220 (2017) 243–262. | DOI | MR | Zbl

S. Blanes, P.C. Moan, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math. 56 (2005) 1519–1537. | DOI | MR | Zbl

Y. Cao, L. Petzold, A posteriori error estimate and global error control for ordinary differential equations by the adjoint method, SIAM J. Sci. Comput. 26 (2004) 359–374. | DOI | MR | Zbl

E. Celledoni, A. Iserles, S.P. Nørsett, B. Orel, Complexity theory for Lie-group solvers, J. Complexity 18 (2002) 242–286. | DOI | MR | Zbl

E. Hairer, Ch Lubich, G. Wanner, Geometric Numerical Integration. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York, (2006). | MR | Zbl

E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Springer-Verlag, Berlin, Heidelberg, New York, (1987). | MR | Zbl

K. Held, Electronic structure calculations using dynamical mean field theory, Adv. Phys. 56 (2007) 829–926. | DOI

N. Higham, Functions of Matrices. Theory and Computations, SIAM, Philadelphia, PA, (2008). | DOI | MR | Zbl

M. Hochbruck, C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003) 945–963. | DOI | MR | Zbl

M. Innerberger, Modeling of solar cells by small Hubbard clusters. B.Sc. thesis, Vienna University of Technology (2017).

A. Iserles, K. Kropielnicka, P. Singh, Magnus-Lanczos methods with simplified commutators for the Schrödinger equation with a time-dependent potential, SIAM J. Numer. Anal. 56 (2018) 1547–1569. | DOI | MR | Zbl

A. Iserles, S.P. Nørsett, On the solution of linear differential equations on Lie groups, Phil. Trans. R. Soc. Lond. A 357 (1999) 983–1019. | DOI | MR | Zbl

K. Kormann, S. Holmgren, H.O. Karlsson, Accurate time-propagation of the Schrödinger equation with an explicitly time-dependent Hamiltonian, J. Chem. Phys. 128 (2008) 184101. | DOI

K. Kormann, S. Holmgren, H.O. Karlsson, Global error control of the time-propagation for the Schrödinger equation with a time-dependent Hamiltonian, J. Comput. Sci. 2 (2011) 178–187. | DOI

C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zurich (2008). | MR | Zbl

W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954) 649–673. | DOI | MR | Zbl

M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal. 44 (2006) 851–864. | DOI | MR | Zbl

Cité par Sources :