We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Numer. Anal. (2017)) for the linear second-order wave equation discretized by the Newmark scheme in time and by the finite element method in space. The new estimator preserves all the properties of the previous one (reliability, optimality on smooth solutions and quasi-uniform meshes) but no longer requires an extra computation of the Laplacian of the discrete solution on each time step.
Mots-clés : a posteriori error bounds in time and space, wave equation, Newmark scheme
@article{M2AN_2019__53_3_729_0, author = {Gorynina, O. and Lozinski, A. and Picasso, M.}, title = {An easily computable error estimator in space and time for the wave equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {729--747}, publisher = {EDP-Sciences}, volume = {53}, number = {3}, year = {2019}, doi = {10.1051/m2an/2018049}, mrnumber = {3959469}, zbl = {1422.65226}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018049/} }
TY - JOUR AU - Gorynina, O. AU - Lozinski, A. AU - Picasso, M. TI - An easily computable error estimator in space and time for the wave equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 729 EP - 747 VL - 53 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018049/ DO - 10.1051/m2an/2018049 LA - en ID - M2AN_2019__53_3_729_0 ER -
%0 Journal Article %A Gorynina, O. %A Lozinski, A. %A Picasso, M. %T An easily computable error estimator in space and time for the wave equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 729-747 %V 53 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018049/ %R 10.1051/m2an/2018049 %G en %F M2AN_2019__53_3_729_0
Gorynina, O.; Lozinski, A.; Picasso, M. An easily computable error estimator in space and time for the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 729-747. doi : 10.1051/m2an/2018049. http://www.numdam.org/articles/10.1051/m2an/2018049/
[1] A posteriori finite element error estimation for second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 4699–4719. | DOI | MR | Zbl
,[2] A posteriori error estimation for the method of lumped masses applied to second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 195 (2006) 4203–4219. | DOI | MR | Zbl
,[3] A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5877–5897. | DOI | MR | Zbl
and ,[4] A discontinuous galerkin method for the wave equation, Comput. Methods Appl. Mech. Eng. 200 (2011) 837–849. | DOI | MR | Zbl
and .[5] Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13 (1976) 564–576. | DOI | MR | Zbl
,[6] Adaptive galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. 10 (2010) 3–48. | DOI | MR | Zbl
, and ,[7] Finite element approximation of the acoustic wave equation: Error control and mesh adaptation. East West J. Numer. Math. 7 (1999) 263–282. | MR | Zbl
and ,[8] Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001) 575–591. | DOI | MR | Zbl
and ,[9] Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15 (2005) 199–225. | DOI | MR | Zbl
and ,[10] Theory and Practice of Finite Elements. Springer, New York, NY (2004). | DOI | Zbl
and ,[11] Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl
,[12] A posteriori L∞ (L2)-error bounds for finite element approximations to the wave equation. IMA J. Numer. Anal. 33 (2013) 1245–1264. | DOI | MR | Zbl
, and ,[13] A posteriori error estimates for leap-frog and cosine methods for second order evolution problems. SIAM J. Numer. Anal. 54 (2016) 120–136. | DOI | MR | Zbl
, , and ,[14] Eléments finis adaptatifs pour l’équation des ondes instationnaire. Ph.D. thesis, Université de Bourgogne Franche-Comté (2018).
,[15] Time and space adaptivity of the wave equation discretized in time by a second order scheme. IMA J. Numer. Anal. (2018) doi: . | DOI | MR
, and ,[16] New development in freefem++. J. Numer. Math. 20 (2012) 251–266. | DOI | MR | Zbl
,[17] An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757–2783. | DOI | MR | Zbl
, and ,[18] A method of computation for structural dynamics. J. Eng. Mech. Div. 85 (1959) 67–94. | DOI
,[19] Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maitrise [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris (1983). | MR | Zbl
and ,[20] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | DOI | MR | Zbl
and ,Cité par Sources :