An easily computable error estimator in space and time for the wave equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 729-747.

We propose a cheaper version of a posteriori error estimator from Gorynina et al. (Numer. Anal. (2017)) for the linear second-order wave equation discretized by the Newmark scheme in time and by the finite element method in space. The new estimator preserves all the properties of the previous one (reliability, optimality on smooth solutions and quasi-uniform meshes) but no longer requires an extra computation of the Laplacian of the discrete solution on each time step.

DOI : 10.1051/m2an/2018049
Classification : 65M15, 65M50, 65M60
Mots-clés : a posteriori error bounds in time and space, wave equation, Newmark scheme
Gorynina, O. 1 ; Lozinski, A. 1 ; Picasso, M. 1

1
@article{M2AN_2019__53_3_729_0,
     author = {Gorynina, O. and Lozinski, A. and Picasso, M.},
     title = {An easily computable error estimator in space and time for the wave equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {729--747},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2018049},
     mrnumber = {3959469},
     zbl = {1422.65226},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018049/}
}
TY  - JOUR
AU  - Gorynina, O.
AU  - Lozinski, A.
AU  - Picasso, M.
TI  - An easily computable error estimator in space and time for the wave equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 729
EP  - 747
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018049/
DO  - 10.1051/m2an/2018049
LA  - en
ID  - M2AN_2019__53_3_729_0
ER  - 
%0 Journal Article
%A Gorynina, O.
%A Lozinski, A.
%A Picasso, M.
%T An easily computable error estimator in space and time for the wave equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 729-747
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018049/
%R 10.1051/m2an/2018049
%G en
%F M2AN_2019__53_3_729_0
Gorynina, O.; Lozinski, A.; Picasso, M. An easily computable error estimator in space and time for the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 729-747. doi : 10.1051/m2an/2018049. http://www.numdam.org/articles/10.1051/m2an/2018049/

[1] S. Adjerid, A posteriori finite element error estimation for second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 4699–4719. | DOI | MR | Zbl

[2] S. Adjerid, A posteriori error estimation for the method of lumped masses applied to second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 195 (2006) 4203–4219. | DOI | MR | Zbl

[3] S. Adjerid and T.C. Massey, A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5877–5897. | DOI | MR | Zbl

[4] S. Adjerid and H. Temimi. A discontinuous galerkin method for the wave equation, Comput. Methods Appl. Mech. Eng. 200 (2011) 837–849. | DOI | MR | Zbl

[5] G.A. Baker, Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13 (1976) 564–576. | DOI | MR | Zbl

[6] W. Bangerth, M. Geiger and R. Rannacher, Adaptive galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. 10 (2010) 3–48. | DOI | MR | Zbl

[7] W. Bangerth and R. Rannacher, Finite element approximation of the acoustic wave equation: Error control and mesh adaptation. East West J. Numer. Math. 7 (1999) 263–282. | MR | Zbl

[8] W. Bangerth and R. Rannacher, Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001) 575–591. | DOI | MR | Zbl

[9] C. Bernardi and E. Süli, Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15 (2005) 199–225. | DOI | MR | Zbl

[10] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer, New York, NY (2004). | DOI | Zbl

[11] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[12] E.H. Georgoulis, O. Lakkis and C. Makridakis, A posteriori L (L2)-error bounds for finite element approximations to the wave equation. IMA J. Numer. Anal. 33 (2013) 1245–1264. | DOI | MR | Zbl

[13] E.H. Georgoulis, O. Lakkis, C.G. Makridakis and J.M. Virtanen, A posteriori error estimates for leap-frog and cosine methods for second order evolution problems. SIAM J. Numer. Anal. 54 (2016) 120–136. | DOI | MR | Zbl

[14] O. Gorynina, Eléments finis adaptatifs pour l’équation des ondes instationnaire. Ph.D. thesis, Université de Bourgogne Franche-Comté (2018).

[15] O. Gorynina, A. Lozinski and M. Picasso, Time and space adaptivity of the wave equation discretized in time by a second order scheme. IMA J. Numer. Anal. (2018) doi: . | DOI | MR

[16] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–266. | DOI | MR | Zbl

[17] A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757–2783. | DOI | MR | Zbl

[18] N.M. Newmark, A method of computation for structural dynamics. J. Eng. Mech. Div. 85 (1959) 67–94. | DOI

[19] P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maitrise [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris (1983). | MR | Zbl

[20] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | DOI | MR | Zbl

Cité par Sources :