Nonintrusive approximation of parametrized limits of matrix power algorithms – application to matrix inverses and log-determinants
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 219-248.

We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018048
Classification : 65D05, 65D15, 68W25
Mots-clés : Empirical Interpolation Method, nonintrusive approximation, inverse matrix, logarithm of determinant
Casenave, Fabien 1 ; Akkari, Nissrine 1 ; Charles, Alexandre 1 ; Rey, Christian 1

1
@article{M2AN_2019__53_1_219_0,
     author = {Casenave, Fabien and Akkari, Nissrine and Charles, Alexandre and Rey, Christian},
     title = {Nonintrusive approximation of parametrized limits of matrix power algorithms {\textendash} application to matrix inverses and log-determinants},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {219--248},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018048},
     zbl = {1416.65111},
     mrnumber = {3937349},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018048/}
}
TY  - JOUR
AU  - Casenave, Fabien
AU  - Akkari, Nissrine
AU  - Charles, Alexandre
AU  - Rey, Christian
TI  - Nonintrusive approximation of parametrized limits of matrix power algorithms – application to matrix inverses and log-determinants
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 219
EP  - 248
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018048/
DO  - 10.1051/m2an/2018048
LA  - en
ID  - M2AN_2019__53_1_219_0
ER  - 
%0 Journal Article
%A Casenave, Fabien
%A Akkari, Nissrine
%A Charles, Alexandre
%A Rey, Christian
%T Nonintrusive approximation of parametrized limits of matrix power algorithms – application to matrix inverses and log-determinants
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 219-248
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018048/
%R 10.1051/m2an/2018048
%G en
%F M2AN_2019__53_1_219_0
Casenave, Fabien; Akkari, Nissrine; Charles, Alexandre; Rey, Christian. Nonintrusive approximation of parametrized limits of matrix power algorithms – application to matrix inverses and log-determinants. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 219-248. doi : 10.1051/m2an/2018048. http://www.numdam.org/articles/10.1051/m2an/2018048/

C.V. Ananth and D.G. Kleinbaum, Regression models for ordinal responses: a review of methods and applications, Int. J. Epidemiol. 26 (1997) 1323–1333. | DOI

T.W. Anderson and I. Olkin, Maximum-likelihood estimation of the parameters of a multivariate normal distribution, Linear Algebra Appl. 70 (1985) 147–171. | DOI | MR | Zbl

M. Barrault, Y. Maday, N.-C. Nguyen and A.T. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C.R. Math. 339 (2004) 667–672. | DOI | MR | Zbl

M. Bergmann, Optimisation aérodynamique par réduction de modèle POD et contrôle optimal: application au sillage laminaire d’un cylindre circulaire, Ph.D. thesis, Vandoeuvre-les-Nancy, INPL, (2004).

C. Boutsidis, P. Drineas, P. Kambadur, E.-M. Kontopoulou and A. Zouzias, A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix, Linear Algebra Appl. 533 (2017) 95–117. | DOI | MR | Zbl

A. Buffa, Y. Maday, A.T. Patera, C., Prud’Homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM: M2AN 46 (2012) 595–603. | DOI | Numdam | MR | Zbl

F. Casenave, A. Ern and T. Lelièvre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math. 41 (2015) 961–986. | DOI | MR | Zbl

F. Casenave, A. Ern and T. Lelièvre, Variants of the Empirical Interpolation Method: Symmetric formulation, choice of norms and rectangular extension, Appl. Math. Lett. 56 (2016) 23–28. | DOI | MR | Zbl

R. Chakir, P. Joly, Y. Maday and P. Parnaudeau, A Non intrusive reduced basis method: application to computational fluid dynamics, In: 2nd ECCOMAS Young Investigators Conference (YIC 2013), Bordeaux, France (2013).

A. Chatterjee, An introduction to the proper orthogonal decomposition, Curr. Sci. 78 (2000) 808–817.

S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010) 2737–2764. | DOI | MR | Zbl

M. Chevreuil and A. Nouy, Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics, Int. J. Numer. Methods Eng. 89 (2012) 241–268. | DOI | MR | Zbl

F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology. XVIth International Workshop on Numerical Methods for Non-Newtonian Flows, J. Non-Newtonian Fluid Mech. 166 (2011) 578–592. | DOI | Zbl

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer, SpringerBriefs in Applied Sciences and Technology. Springer International Publishing, New York, 2013. | MR | Zbl

F. Chinesta, P. Ladeveze and C. Elias, A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng. 18 (2011) 395–404. | DOI

A. Dasgupta, Y.V. Sun, I.R. König, J.E. Bailey-Wilson and J.D. Malley, Brief review of regression-based and machine learning methods in genetic epidemiology: the genetic analysis workshop 17 experience, Genet. Epidemiol. 35 (2011) S5–S11. | DOI

D.J. Knezevic, N.C. Nguyen, A.T. Patera, Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations, Math. Models Methods Appl. Sci. 21 (2011) 1415–1442. | DOI | MR | Zbl

G. Luo, A review of automatic selection methods for machine learning algorithms and hyper-parameter values, Network Model. Anal. Health Inf. Bioinf. 5 (2016) 18. | DOI

L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris Ser. I 331 (2005) 153–158. | DOI | MR | Zbl

L. Machiels, Y. Maday, A.T. PateraC. Prud’Homme, D.V. Rovas, G. Turinici and K. Veroy, Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, CJ Fluids Eng. 124 (2002) 70–80. | DOI

Y. Maday, O. Mula and G. Turinici, Convergence analysis of the Generalized Empirical Interpolation Method, SIAM J. Numer. Anal. 54 (2016) 1713–1731. | DOI | MR | Zbl

Y. Maday, N.-C. Nguyen, A.T. Patera and S.H. Pau, A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl, Anal. 8 (2009) 383–404. | DOI | MR | Zbl

R.J. Martin, Approximations to the determinant term in Gaussian maximum likelihood estimation of some spatial models, Commun. Stat. Theory Methods 22 (1992) 189–205. | DOI | Zbl

P. Meer, D. Mintz, A. Rosenfeld and D.Y. Kim, Robust regression methods for computer vision: a review, Int. J. Comput. Vision 6 (1991) 59–70. | DOI

A.T. Patera, C. Prud’Homme, D.V. Rovas and K. Veroy, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, USA, (2003).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830. | MR | Zbl

V. Roshan Joseph, E. Gul and S. Ba, Maximum projection designs for computer experiments, Biometrika 102 (2015) 371–380. | DOI | MR | Zbl

S. Sen, Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems, Numer. Heat Transfer Part B: Fundam. 54 (2008) 369–389. | DOI

S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, ``Natural norm’’ a posteriori error estimators for reduced basis approximations, J. Comput. Phys. 217 (2006) 37–62. | DOI | MR | Zbl

L. Sirovich, Turbulence and the dynamics of coherent structures, parts I, II and III, Q. Appl. Math. XLV (1987) 561–590. | DOI | MR | Zbl

I. Uysal and H.A. Güvenir, An overview of regression techniques for knowledge discovery, Knowl. Eng. Rev. 14 (1999) 319–340. | DOI

K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids 47 (2005) 773–788. | DOI | MR | Zbl

K. Veroy, C. Prud’Homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds, C.R. Math. 337 (2003) 619–624. | DOI | MR | Zbl

D. Xiao, Z. Lin, F. Fang, C.C. Pain, I.M. Navon, P. Salinas and A. Muggeridge, Non-intrusive reduced-order modeling for multiphase porous media flows using Smolyak sparse grids, Int. J. Numer. Methods Fluids 83 (2017) 205–219. | DOI | MR

M. Yano, A space-time Petrov-Galerkin certified reduced basis method: Application to the Boussinesq equations, SIAM J. Sci. Comput. 36 (2014) A232–A266. | DOI | MR | Zbl

O. Zahm and A. Nouy, Interpolation of inverse operators for preconditioning parameter-dependent equations, SIAM J. Sci. Comput. 38 (2016) A1044–A1074. | DOI | MR | Zbl

Y. Zhang, W.E. Leithead, D.J. Leith and L. Walshe, Log-det approximation based on uniformly distributed seeds and its application to Gaussian process regression, J. Comput. Appl. Math. 220 (2008) 198–214. | DOI | MR | Zbl

Cité par Sources :