Convergence of a homotopy finite element method for computing steady states of Burgers’ equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1629-1644.

In this paper, the convergence of a homotopy method (1.1) for solving the steady state problem of Burgers’ equation is considered. When ν is fixed, we prove that the solution of (1.1) converges to the unique steady state solution as ε → 0, which is independent of the initial conditions. Numerical examples are presented to confirm this conclusion by using the continuous finite element method. In contrast, when ν = ε →, numerically we show that steady state solutions obtained by (1.1) indeed depend on initial conditions.

DOI : 10.1051/m2an/2018046
Classification : 58B05, 65M12, 65M60
Mots-clés : Homotopy method, continuous finite element method, Burgers’ equation
Hao, Wenrui 1 ; Yang, Yong 1

1
@article{M2AN_2019__53_5_1629_0,
     author = {Hao, Wenrui and Yang, Yong},
     title = {Convergence of a homotopy finite element method for computing steady states of {Burgers{\textquoteright}} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1629--1644},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2018046},
     zbl = {1446.65092},
     mrnumber = {3991489},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018046/}
}
TY  - JOUR
AU  - Hao, Wenrui
AU  - Yang, Yong
TI  - Convergence of a homotopy finite element method for computing steady states of Burgers’ equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1629
EP  - 1644
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018046/
DO  - 10.1051/m2an/2018046
LA  - en
ID  - M2AN_2019__53_5_1629_0
ER  - 
%0 Journal Article
%A Hao, Wenrui
%A Yang, Yong
%T Convergence of a homotopy finite element method for computing steady states of Burgers’ equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1629-1644
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018046/
%R 10.1051/m2an/2018046
%G en
%F M2AN_2019__53_5_1629_0
Hao, Wenrui; Yang, Yong. Convergence of a homotopy finite element method for computing steady states of Burgers’ equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1629-1644. doi : 10.1051/m2an/2018046. http://www.numdam.org/articles/10.1051/m2an/2018046/

[1] W. Bangerth, R. Hartmann and G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24/1–24/27. | DOI | MR | Zbl

[2] C. Bardos, A.Y. Leroux and J.C. Nedelec, First order quasilinear equations with boundary conditions. Commun. Part. Diff. Eq. 4 (Jan 1979) 1017–1034. | DOI | MR | Zbl

[3] D. Bates, J. Hauenstein, A. Sommese and C. Wampler, Numerically Solving Polynomial Systems with Bertini (Software, Environments and Tools). SIAM, Philadelphia, Pennsylvania (2013). | MR | Zbl

[4] A. Ern and J.L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004). | DOI | MR | Zbl

[5] L.C. Evans, Partial Differential Equations, in Vol. 19 of Graduate Studies in Mathematics. Providence, Rhode Island (1998). | MR | Zbl

[6] J.-L. Guermond and M. Nazarov, A maximum-principle preserving C 0 finite element method for scalar conservation equations. Comput. Methods Appl. Mech. Engrg. 272 (2014) 198–213. | DOI | MR | Zbl

[7] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54 (2016) 2466–2489. | DOI | MR | Zbl

[8] J.-L. Guermond, R. Pasquetti and B. Popov, Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230 (2011) 4248–4267. | DOI | MR | Zbl

[9] J.-L. Guermond, M. Nazarov, B. Popov and Y. Yang, A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations. SIAM J. Numer. Anal. 52 (2014) 2163–2182. | DOI | MR | Zbl

[10] W. Hao, J. Hauenstein, B. Hu, Y. Liu, A. Sommese and Y.-T. Zhang, Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Anal. Real World App. 13 (2012) 694–709. | DOI | MR | Zbl

[11] W. Hao, J. Hauenstein, B. Hu, T. Mccoy and A. Sommese, Computing steady-state solutions for a free boundary problem modeling tumor growth by stokes equation. J. Comput. Appl. Math. 237 (2013) 326–334. | DOI | MR | Zbl

[12] W. Hao, J. Hauenstein, C.-W. Shu, A. Sommese, Z. Xu and Y.-T. Zhang, A homotopy method based on weno schemes for solving steady state problems of hyperbolic conservation laws. J. Comput. Phys. 250 (2013) 332–346. | DOI | MR | Zbl

[13] W. Hao, R. Nepomechie and A. Sommese, Completeness of solutions of bethe’s equations. Phys. Rev. E 88 (2013) 052113. | DOI

[14] W. Hao, B. Hu and A. Sommese, Numerical algebraic geometry and differential equations. In: Future Vision and Trends on Shapes, Geometry and Algebra. Springer, London (2014) 39–53. | DOI | MR

[15] J. Hicken and D. Zingg, Globalization strategies for inexact-newton solvers. In: 19th AIAA Computational Fluid Dynamics (2009) 4139.

[16] J. Hicken, H. Buckley, M. Osusky and D. Zingg, Dissipation-based continuation: a globalization for inexact-newton solvers. In: 20th AIAA Computational Fluid Dynamics Conference (2011) 3237.

[17] E. Hopf, The partial differential equation u t + u u x = μ x x . Commun. Pure App. Math. 3 (1950) 201–230. | DOI | MR | Zbl

[18] A.F. Izmailov and M.V. Solodov, Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer International Publishing, New York (2014). | DOI | MR | Zbl

[19] G. Kreiss and H.-O. Kreiss, Convergence to steady state of solutions of Burgers’ equation. Appl. Numer. Math. 2 (1986) 161–179. | DOI | MR | Zbl

[20] P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954) 159–193. | DOI | MR | Zbl

[21] V.B. Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (1974) 361–370. | DOI | Zbl

[22] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. (1990) 408–463. | DOI | MR | Zbl

[23] M.D. Salas, S. Abarbanel and D. Gottlieb, Multiple steady states for characteristic initial value problems. Appl. Numer. Math. 2 (1986) 193–210. | DOI | MR | Zbl

[24] A. Sommese and C. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. In Vol. 99. World Scientific, Singapore. (2005). | MR | Zbl

[25] I.S. Strub and A.M. Bayen, Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlin. Control 16 (2006) 733–748. | DOI | MR | Zbl

Cité par Sources :