Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 2037-2064.

We present a posteriori error analysis of diffusion problems where the diffusion tensor is not necessarily symmetric and positive definite and can in particular change its sign. We first identify the correct intrinsic error norm for such problems, covering both conforming and nonconforming approximations. It combines a dual (residual) norm together with the distance to the correct functional space. Importantly, we show the equivalence of both these quantities defined globally over the entire computational domain with the Hilbertian sums of their localizations over patches of elements. In this framework, we then design a posteriori estimators which deliver simultaneously guaranteed error upper bound, global and local error lower bounds, and robustness with respect to the (sign-changing) diffusion tensor. Robustness with respect to the approximation polynomial degree is achieved as well. The estimators are given in a unified setting covering at once conforming, nonconforming, mixed, and discontinuous Galerkin finite element discretizations in two or three space dimensions. Numerical results illustrate the theoretical developments.

DOI : 10.1051/m2an/2018034
Classification : 65N15, 65N30, 65N50, 78A48
Mots-clés : Noncoercive problem, sign change, metamaterial, a posteriori error estimate, dual norm, distance to energy space, localization, equivalence local–global, minimization, best approximation, equilibrated flux, unified framework, robustness, finite element methods
Ciarlet, Patrick Jr. 1 ; Vohralík, Martin 1

1
@article{M2AN_2018__52_5_2037_0,
     author = {Ciarlet, Patrick Jr. and Vohral{\'\i}k, Martin},
     title = {Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2037--2064},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018034},
     mrnumber = {3891753},
     zbl = {1417.65187},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018034/}
}
TY  - JOUR
AU  - Ciarlet, Patrick Jr.
AU  - Vohralík, Martin
TI  - Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2037
EP  - 2064
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018034/
DO  - 10.1051/m2an/2018034
LA  - en
ID  - M2AN_2018__52_5_2037_0
ER  - 
%0 Journal Article
%A Ciarlet, Patrick Jr.
%A Vohralík, Martin
%T Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2037-2064
%V 52
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018034/
%R 10.1051/m2an/2018034
%G en
%F M2AN_2018__52_5_2037_0
Ciarlet, Patrick Jr.; Vohralík, Martin. Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 2037-2064. doi : 10.1051/m2an/2018034. http://www.numdam.org/articles/10.1051/m2an/2018034/

[1] M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42 (2005) 2320–2341. | DOI | MR | Zbl

[2] M. Ainsworth, A framework for obtaining guaranteed error bounds for finite element approximations. J. Comput. Appl. Math. 234 (2010) 2618–2632. | DOI | MR | Zbl

[3] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes and G. Wells, The FEniCS Project version 1.5. Arch. Numer. Softw. 3 (2015).

[4] I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Method. Appl. Mech. Eng. 61 (1987) 1–40. | DOI | MR | Zbl

[5] R. Becker, D. Capatina and R. Luce, Local flux reconstructions for standard finite element methods on triangular meshes. SIAM J. Numer. Anal. 54 (2016) 2684–2706. | DOI | MR | Zbl

[6] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. | DOI | MR | Zbl

[7] J. Blechta, Dolfin-tape, DOLFIN tools for a posteriori error estimation, version “paper-norms-nonlin-code-v1.0-rc3” (2016).

[8] J. Blechta, J. Málek and M. Vohralík, Localization of the W-1,q norm for local a posteriori efficiency. HAL Preprint , submitted for publication (2016). | HAL | MR

[9] A.-S. Bonnet-Ben Dhia, C. Carvalho and P. Ciarlet Jr., Mesh requirements for the finite element approximation of problems with sign-changing coefficients. Numer. Math. 138 (2018) 801–838. | DOI | MR | Zbl

[10] A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM: M2AN 46 (2012) 1363–1387. | DOI | Numdam | MR | Zbl

[11] A.-S. Bonnet-Ben Dhia, M. Dauge and K. Ramdani, Analyse spectrale et singularités d’un problème de transmission non coercif. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 717–720. | DOI | MR | Zbl

[12] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust. Comput. Method. Appl. Mech. Eng. 198 (2009) 1189–1197. | DOI | MR | Zbl

[13] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comput. 77 (2008) 651–672. | DOI | MR | Zbl

[14] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | DOI | MR | Zbl

[15] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | DOI | MR | Zbl

[16] C. Carstensen, M. Eigel, R.H.W. Hoppe and C. Löbhard, A review of unified a posteriori finite element error control. Numer. Math. Theory Method. Appl. 5 (2012) 509–558. | DOI | MR | Zbl

[17] C. Carstensen and S.A. Funken, Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21 (1999/00) 1465–1484. | DOI | MR | Zbl

[18] C. Carstensen and C. Merdon, Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249 (2013) 74–94. | DOI | MR | Zbl

[19] A. Chaillou and M. Suri, A posteriori estimation of the linearization error for strongly monotone nonlinear operators. J. Comput. Appl. Math. 205 (2007) 72–87. | DOI | MR | Zbl

[20] L. Chesnel and P. Ciarlet Jr., T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124 (2013) 1–29. | DOI | MR | Zbl

[21] E.T. Chung and P. Ciarlet Jr., A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239 (2013) 189–207. | DOI | MR | Zbl

[22] P. Ciarlet Jr. and M. Vohralík, Robust a posteriori error control for transmission problems with sign changing coefficients using localization of dual norms. HAL Preprint (2015). | HAL | Numdam

[23] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1978). | MR | Zbl

[24] A. Cohen, R. De Vore and R.H. Nochetto, Convergence rates of AFEM with H-1 data. Found. Comput. Math. 12 (2012) 671–718. | DOI | MR | Zbl

[25] P. Destuynder and B. Métivet, Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35 (1998) 2099–2115. | DOI | MR | Zbl

[26] P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method. Math. Comput. 68 (1999) 1379–1396. | DOI | MR | Zbl

[27] D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. Vol. 69 of Mathématiques & Applications. (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | MR | Zbl

[28] V. Dolejší, A. Ern and M. Vohralík, hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38 (2016) A3220–A3246. | DOI | MR | Zbl

[29] L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Method. Appl. Mech. Eng. 200 (2011) 2782–2795. | DOI | MR | Zbl

[30] A. Ern and J.-L. Guermond, Theory and Practice Of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | DOI | MR | Zbl

[31] A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35 (2013) A1761–A1791. | DOI | MR | Zbl

[32] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | DOI | MR | Zbl

[33] A. Ern and M. Vohralík, Stable broken H1 and H polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. HAL Preprint (2018). | HAL | MR | Zbl

[34] D.W. Kelly, The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Method. Eng. 20 (1984) 1491–1506. | DOI | MR | Zbl

[35] C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. ESAIM: M2AN 50 (2016) 1333–1369. | DOI | Numdam | MR | Zbl

[36] P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485–509. | DOI | MR | Zbl

[37] R. Luce and B.I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42 (2004) 1394–1414 | DOI | MR | Zbl

[38] P.R. Morin, H. Nochetto and K.G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comput. 72 (2003) 1067–1097. | DOI | MR | Zbl

[39] S. Nicaise and J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235 (2011) 4272–4282. | DOI | MR | Zbl

[40] S. Nicaise, K. Witowski and B.I. Wohlmuth, An a posteriori error estimator for the Lamé equation based on equilibrated fluxes. IMA J. Numer. Anal. 28 (2008) 331–353. | DOI | MR | Zbl

[41] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl

[42] W. Prager and J.L. Synge, Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5 (1947) 241–269. | DOI | MR | Zbl

[43] S. Repin, A posteriori estimates for partial differential equations. Vol. 4 of Radon Series on Computational and Applied Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin (2008). | DOI | MR | Zbl

[44] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In Vol. II of Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 523–639. | MR | Zbl

[45] A. Veeser, Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16 (2016) 723–750. | DOI | MR | Zbl

[46] A. Veeser and R. Verfürth, Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47 (2009) 2387–2405. | DOI | MR | Zbl

[47] A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. | DOI | MR | Zbl

[48] R. Verfürth, A posteriori error estimates for non-linear parabolic equations. Tech. report, Ruhr-Universität Bochum (2004).

[49] R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766–1782. | DOI | MR | Zbl

[50] R. Verfürth, A posteriori error estimation techniques for finite element methods, in Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl

[51] M. Vohralík, On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H1. Numer. Funct. Anal. Optim. 26 (2005) 925–952. | DOI | MR | Zbl

[52] M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46 (2011) 397–438. | DOI | MR | Zbl

[53] H. Wallen, H. Kettunen and A. Sihvola, Surface modes of negative-parameter interfaces and the importance of rounding sharp corners. Metamaterials 2 (2008) 113–121. | DOI

Cité par Sources :