Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 567-593.

In this paper, a diffusion-aggregation equation with delta potential is introduced. Based on the global existence and uniform estimates of solutions to the diffusion-aggregation equation, we also provide the rigorous derivation from a stochastic particle system while introducing an intermediate particle system with smooth interaction potential. The theoretical results are compared to numerical simulations relying on suitable discretization schemes for the microscopic and macroscopic level. In particular, the regime switch where the analytic theory fails is numerically analyzed very carefully and allows for a better understanding of the equation.

DOI : 10.1051/m2an/2018028
Classification : 35Q70, 82C22, 65M06
Mots clés : Interacting particle system, stochastic processes, mean-field equations, hydrodynamic limit, numerical simulations
Chen, Li 1 ; Göttlich, Simone 1 ; Knapp, Stephan 1

1
@article{M2AN_2018__52_2_567_0,
     author = {Chen, Li and G\"ottlich, Simone and Knapp, Stephan},
     title = {Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {567--593},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2018028},
     zbl = {1404.35434},
     mrnumber = {3834436},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018028/}
}
TY  - JOUR
AU  - Chen, Li
AU  - Göttlich, Simone
AU  - Knapp, Stephan
TI  - Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 567
EP  - 593
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018028/
DO  - 10.1051/m2an/2018028
LA  - en
ID  - M2AN_2018__52_2_567_0
ER  - 
%0 Journal Article
%A Chen, Li
%A Göttlich, Simone
%A Knapp, Stephan
%T Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 567-593
%V 52
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018028/
%R 10.1051/m2an/2018028
%G en
%F M2AN_2018__52_2_567_0
Chen, Li; Göttlich, Simone; Knapp, Stephan. Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 567-593. doi : 10.1051/m2an/2018028. http://www.numdam.org/articles/10.1051/m2an/2018028/

[1] S.R. Asmussen and P.W. Glynn, Stochastic Simulation: Algorithms and Analysis. Vol. 57 of Stochastic Modelling and Applied Probability. Springer, New York (2007). | DOI | MR | Zbl

[2] J. Bedrossian, Intermediate asymptotics for critical and supercritical aggregation equations and Patlak-Keller-Segel models. Commun. Math. Sci. 9 (2011) 1143–1161. | DOI | MR | Zbl

[3] D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31 (1997) 615–641. | DOI | Numdam | MR | Zbl

[4] A.L. Bertozzi and J. Brandman, Finite-time blow-up of L-weak solutions of an aggregation equation. Commun. Math. Sci. 8 (2010) 45–65. | DOI | MR | Zbl

[5] M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34 (2012) B559–B583. | DOI | MR | Zbl

[6] M. Bodnar and J.J.L. Velazquez, An integro-differential equation arising as a limit of individual cell-based models. J. Differ. Equ. 222 (2006) 341–380. | DOI | MR | Zbl

[7] M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions. Nonlinear Anal. Real World Appl. 8 (2007) 939–958. | DOI | MR | Zbl

[8] R. Bürger, R. Ruiz, K. Schneider and M. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension. ESAIM: M2AN 42 (2008) 535–563. | DOI | Numdam | MR | Zbl

[9] J.A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. | DOI | MR | Zbl

[10] J.A. Carrillo, R.J. Mccann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamer. 19 (2003) 971–1018. | DOI | MR | Zbl

[11] X. Chen, A. Jüngel and J.-G. Liu, A note on aubin-lions-dubinskiĭ lemmas. Acta Appl. Math. 133 (2014) 33–43. | DOI | MR | Zbl

[12] A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111 (2008) 169–205. | DOI | MR | Zbl

[13] A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Model. 5 (2012) 51–95. | DOI | MR | Zbl

[14] J. Dolbeault and B.T. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in ℝ2. C. R. Math. Acad. Sci. Paris 339 (2004) 611–616. | DOI | MR | Zbl

[15] H. Dong, The aggregation equation with power-law kernels: ill-posedness, mass concentration and similarity solutions. Commun. Math. Phys. 304 (2011) 649–664. | DOI | MR | Zbl

[16] A.C. García and P. Pickl, Microscopic derivation of the keller-segel equation in the sub-critical regime, Preprint ArXiv: (2017). | arXiv

[17] D. Godinho and C. Quininao Propagation of chaos for a subcritical Keller-Segel model. Ann. Inst. Henri Poincaré Probab. Statist. 51 (2015) 965–992. | DOI | Numdam | MR | Zbl

[18] H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation. Math. Comput. 86 (2017) 2719–2744. | DOI | MR | Zbl

[19] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329 (1992) 819–824 | DOI | MR | Zbl

[20] F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics. NoDEA Nonlin. Differ. Equ. Appl. 20 (2013) 101–127. | DOI | MR | Zbl

[21] F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations. SIAM J. Numer. Anal. 53 (2015) 895–916. | DOI | MR | Zbl

[22] B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. Henri Poincaré Probab. Statist. 34 (1998) 727–766. | DOI | Numdam | MR | Zbl

[23] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Springer, Berlin, Heidelberg (1992). | DOI | MR | Zbl

[24] T. Laurent, Local and global existence for an aggregation equation. Commun. Part. Differ. Equ. 32 (2007) 1941–1964. | DOI | MR | Zbl

[25] R.J. Leveque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | DOI | MR | Zbl

[26] J.-G. Liu and R. Yang, A random particle blob method for the Keller-Segel equation and convergence analysis. Math. Comput. 86 (2017) 725–745. | DOI | MR | Zbl

[27] Y. Liu, C.-W. Shu and M. Zhang, High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33 (2011) 939–965. | DOI | MR | Zbl

[28] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Vol. 53 of Applied Mathematical Sciences. Springer-Verlag, New York (1984). | DOI | MR | Zbl

[29] K. Oelschläger, Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88 (1990) 294–346. | DOI | MR | Zbl

[30] M.C. Pandian, A partial upwind difference scheme for nonlinear parabolic equations. J. Comput. Appl. Math. 26 (1989) 219–233. | DOI | MR | Zbl

[31] R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos. Stoch. Process. Appl. 117 (2007) 526–538. | DOI | MR | Zbl

[32] J. Simon, Compact sets in the space Lp (O, T ; B). Ann. Math. Pura Appl. 146 (1986) 65–96. | DOI | MR | Zbl

[33] A.-S. Sznitman, Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX – 1989. Vol. 1464 of Lect. Notes Math. Springer, Berlin (1991) 165–251. | MR | Zbl

[34] C.M. Topaz, A.L. Bertozzi and M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68 (2006) 1601–1623. | DOI | MR | Zbl

[35] G. Toscani, One-dimensional kinetic models of granular flows. ESAIM: M2AN 34 (2000) 1277–1291. | DOI | Numdam | MR | Zbl

[36] Y. Xing, C.-W. Shu and S. Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48 (2010) 339–349. | DOI | MR | Zbl

Cité par Sources :