Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1137-1172.

In this paper, we discuss the numerical approximation of a distributed optimal control problem governed by the von Kármán equations, defined in polygonal domains with point-wise control constraints. Conforming finite elements are employed to discretize the state and adjoint variables. The control is discretized using piece-wise constant approximations. A priori error estimates are derived for the state, adjoint and control variables. Numerical results that justify the theoretical results are presented.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018023
Classification : 65N30, 65N15, 49M05, 49M25
Mots-clés : von Kármán equations, distributed control, plate bending, semilinear, conforming finite element methods, error estimates.
Mallik, Gouranga 1 ; Nataraj, Neela 1 ; Raymond, Jean-Pierre 1

1
@article{M2AN_2018__52_3_1137_0,
     author = {Mallik, Gouranga and Nataraj, Neela and Raymond, Jean-Pierre},
     title = {Error estimates for the numerical approximation of a distributed optimal control problem governed by the von {K\'arm\'an} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1137--1172},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2018023},
     zbl = {1405.65153},
     mrnumber = {3865561},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018023/}
}
TY  - JOUR
AU  - Mallik, Gouranga
AU  - Nataraj, Neela
AU  - Raymond, Jean-Pierre
TI  - Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1137
EP  - 1172
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018023/
DO  - 10.1051/m2an/2018023
LA  - en
ID  - M2AN_2018__52_3_1137_0
ER  - 
%0 Journal Article
%A Mallik, Gouranga
%A Nataraj, Neela
%A Raymond, Jean-Pierre
%T Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1137-1172
%V 52
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018023/
%R 10.1051/m2an/2018023
%G en
%F M2AN_2018__52_3_1137_0
Mallik, Gouranga; Nataraj, Neela; Raymond, Jean-Pierre. Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1137-1172. doi : 10.1051/m2an/2018023. http://www.numdam.org/articles/10.1051/m2an/2018023/

[1] M.S. Berger, On von Kármán equations and the buckling of a thin elastic plate: I. The clamped plate. Commun. Pure Appl. Math. 20 (1967) 687–719. | DOI | MR | Zbl

[2] M.S. Berger and P.C. Fife, On von Kármán equations and the buckling of a thin elastic plate. Bull. Am. Math. Soc. 72 (1966) 1006–1011. | DOI | MR | Zbl

[3] M.S. Berger and P.C. Fife, Von Kármán equations and the buckling of a thin elastic plate. II. Plate with general edge conditions. Commun. Pure Appl. Math. 21 (1968) 227–241. | DOI | MR | Zbl

[4] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. | DOI | MR | Zbl

[5] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer (2007). | MR | Zbl

[6] S.C. Brenner, M. Neilan, A. Reiser, and L.Y. Sung, A C0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. | DOI | MR | Zbl

[7] F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. | DOI | Numdam | MR | Zbl

[8] E. Casas and K. Chrysafinos, Error estimates for the discretization of the velocity tracking problem. Numer. Math. 130 (2015) 615–643. | DOI | MR | Zbl

[9] E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. | DOI | MR | Zbl

[10] E. Casas, M. Mateos, and J.P. Raymond, Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46 (2007) 952–982 | DOI | MR | Zbl

[11] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-, Amsterdam (1978). | MR | Zbl

[12] P.G. Ciarlet, Mathematical Elasticity: Theory of Plates, Vol. II. North-Holland, Amsterdam (1997). | MR | Zbl

[13] J.C. De Los Reyes and V. Dhamo, Error estimates for optimal control problems of a class of quasilinear equations arising in variable viscosity fluid flow. Numer. Math. 132 (2016) 691–720. | DOI | MR | Zbl

[14] L.C. Evans, Partial Differential Equations, Vol. 19. American Mathematical Society (1998). | MR | Zbl

[15] S. Frei, R. Rannacher and W. Wollner, A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. Calcolo 50 (2013) 165–193. | DOI | MR | Zbl

[16] P. Grisvard, Singularities in Boundary Value Problems, Vol. 22 of Research Notes in Applied Mathematics. Springer-Verlag (1992). | MR | Zbl

[17] T. Gudi,N. Nataraj, and K. Porwal, An interior penalty method for distributed optimal control problems governed by the biharmonic operator. Comput. Math. Appl. 68 (2014) 2205–2221. | DOI | MR | Zbl

[18] M. Gunzburger and L. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34 (1996) 1001–1043. | DOI | MR | Zbl

[19] M. Gunzburger, L. Hou, and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25 (1991) 711–748. | DOI | Numdam | MR | Zbl

[20] M. Gunzburger, L. Hou, and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comput. 57 (1991) 123–151. | DOI | MR | Zbl

[21] L. Hou and J.C. Turner, Finite element approximation of optimal control problems for the von Kármán equations. Numer. Methods Partial Differ. Equ. 11 (1995) 111–125. | DOI | MR | Zbl

[22] G.H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. | DOI | MR | Zbl

[23] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). | DOI | MR | Zbl

[24] G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. | DOI | MR | Zbl

[25] G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Kármán equations. ESAIM: M2AN 50 (2016) 433–454. | DOI | Numdam | MR | Zbl

[26] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004) 970–985. | DOI | MR | Zbl

[27] T. Miyoshi, A mixed finite element method for the solution of the von Kármán equations. Numer. Math. 26 (1976) 255–269. | DOI | MR | Zbl

[28] A. Quarteroni, Hybrid finite element methods for the von Kármán equations. Calcolo 16 (1979) 271–288. | DOI | MR | Zbl

[29] L. Reinhart, On the numerical analysis of the von Kármán equations: mixed finite element approximation and continuation techniques. Numer. Math. 39 (1982) 371–404. | DOI | MR | Zbl

[30] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl

Cité par Sources :