Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 869-891.

This paper proposes to address the issue of complexity reduction for the numerical simulation of multiscale media in a quasi-periodic setting. We consider a stationary elliptic diffusion equation defined on a domain D such that D ¯ is the union of cells { D ¯ i } i I and we introduce a two-scale representation by identifying any function v ( x ) defined on D with a bi-variate function v ( i , y ) , where i I relates to the index of the cell containing the point x and y Y relates to a local coordinate in a reference cell Y . We introduce a weak formulation of the problem in a broken Sobolev space V ( D ) using a discontinuous Galerkin framework. The problem is then interpreted as a tensor-structured equation by identifying V ( D ) with a tensor product space 1 V ( Y ) of functions defined over the product set I × Y . Tensor numerical methods are then used in order to exploit approximability properties of quasi-periodic solutions by low-rank tensors.

DOI : 10.1051/m2an/2018022
Classification : 15A69, 35B15, 65N30
Mots-clés : Quasi-periodicity, tensor approximation, discontinuous Galerkin, multiscale, heterogeneous diffusion
Ayoul-Guilmard, Quentin 1 ; Nouy, Anthony 1 ; Binetruy, Christophe 1

1
@article{M2AN_2018__52_3_869_0,
     author = {Ayoul-Guilmard, Quentin and Nouy, Anthony and Binetruy, Christophe},
     title = {Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {869--891},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2018022},
     mrnumber = {3865552},
     zbl = {1407.65279},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018022/}
}
TY  - JOUR
AU  - Ayoul-Guilmard, Quentin
AU  - Nouy, Anthony
AU  - Binetruy, Christophe
TI  - Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 869
EP  - 891
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018022/
DO  - 10.1051/m2an/2018022
LA  - en
ID  - M2AN_2018__52_3_869_0
ER  - 
%0 Journal Article
%A Ayoul-Guilmard, Quentin
%A Nouy, Anthony
%A Binetruy, Christophe
%T Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 869-891
%V 52
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018022/
%R 10.1051/m2an/2018022
%G en
%F M2AN_2018__52_3_869_0
Ayoul-Guilmard, Quentin; Nouy, Anthony; Binetruy, Christophe. Tensor-based multiscale method for diffusion problems in quasi-periodic heterogeneous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 869-891. doi : 10.1051/m2an/2018022. http://www.numdam.org/articles/10.1051/m2an/2018022/

[1] A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231 (2012) 7014–7036. | DOI | MR | Zbl

[2] A. Abdulle, E. Weinan, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012). | DOI | MR | Zbl

[3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4 (2005) 790–812. | DOI | MR | Zbl

[4] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to Numerical Stochastic Homogenization 311 and the Related Computational Challenges: Some Recent Developments, Vol. 22. World Scientific, Singapore (2011). | MR

[5] G. Bal, J. Wenjia and W. Jing, Corrector theory for MsFEM and HMM in random media. Multiscale Model. Simul. 9 (2011) 1549–1587. | DOI | MR | Zbl

[6] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques. C. R. Math. 343 (2006) 717–724. | DOI | MR | Zbl

[7] X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes Relat. Fields 66 (2012) 31–66. | MR | Zbl

[8] S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008). | DOI | MR | Zbl

[9] M. Chevreuil, A. Nouy and E. Safatly, A multiscale method with patch for the solution of stochastic partial differential equationswith localized uncertainties. Comput. Methods Appl. Mech. Eng. 255 (2013) 255–274. | DOI | MR | Zbl

[10] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69. Springer Science & Business Media (2011). | MR | Zbl

[11] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. | MR | Zbl

[12] Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods. Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, NY (2009). | MR | Zbl

[13] Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206 (2007) 843–872. | DOI | MR | Zbl

[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004). | DOI | MR | Zbl

[15] L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (1998). | MR | Zbl

[16] A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121 (2012) 503–530. | DOI | MR | Zbl

[17] L. Gendre, O. Allix and P. Gosselet, A two-scale approximation of the Schur complement and its use for non-intrusive coupling. Int. J. Numer. Methods Eng. 87 (2011) 889–905. | DOI | MR | Zbl

[18] R. Glowinski, J. He, J. Rappaz and J. Wagner, Approximation of multi-scale elliptic problems using patches of finite elements. C. R. Math. 337 (2003) 679–684. | DOI | MR | Zbl

[19] L. Grasedyck, D. Kressner and C. Tobler, A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36 (2013) 53–78. | DOI | MR | Zbl

[20] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus. Vol. 42 of Springer Series in Computational Mathematics. Springer, Heidelberg (2012). | MR | Zbl

[21] V. Ha Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005). | MR | Zbl

[22] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. | DOI | MR | Zbl

[23] B.N. Khoromskij, Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110 (2012) 1–19. | DOI

[24] C. Le Bris, Some numerical approaches for weakly random homogenization, in Numerical Mathematics and Advanced Applications, edited by G. Kreiss, P. Lötstedt, A. Målqvist and M. Neytcheva. Springer, Berlin, Heidelberg (2009) 29–45. | Zbl

[25] C. Le Bris, F. Legoll and W. Minvielle, Special quasirandom structures: a selection approach for stochastic homogenization. Monte Carlo Methods Appl. 22 (2016) 25–54. | DOI | MR | Zbl

[26] C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. | DOI | Numdam | MR | Zbl

[27] C. Le Bris and F. Thomines, A reduced basis approach for some weakly stochastic multiscale problems. Chin. Ann. Math. Ser. B 33 (2012) 657–672. | DOI | MR | Zbl

[28] F. Legoll and W. Minvielle, A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization. Multiscale Model. Simul. 13 (2015). | DOI | MR | Zbl

[29] F. Legoll and W. Minvielle, Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 1–27. | MR | Zbl

[30] L. Lin and B. Stamm, A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions. Part I: Second order linear PDE. ESAIM: M2AN 50 (2016) 1193–1222. | DOI | Numdam | MR | Zbl

[31] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in International Congress of Mathematicians, Madrid. European Mathematical Society (2006). 1255–1270. | MR | Zbl

[32] Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383–404. | DOI | MR | Zbl

[33] A. Nouy, Low-rank methods for high-dimensional approximation and model order reduction, in Chapter 4 of Model Reduction and Approximation. SIAM (2017) 171–226. | DOI | MR

[34] O. Pironneau and J.-L. Lions, Domain decomposition methods for CAD. C. R. Acad. Sci. Ser. I – Math. 328 (1999) 73–80. | MR | Zbl

[35] V. Rezzonico, A. Lozinski, M. Picasso, J. Rappaz and J. Wagner, Multiscale algorithm with patches of finite elements. Math. Comput. Simul. 76 (2007) 181–187. | DOI | MR | Zbl

Cité par Sources :