A multiscale time integrator Fourier pseudospectral (MTI-FP) method is proposed and rigorously analyzed for the nonlinear Dirac equation (NLDE), which involves a dimensionless parameter
Mots-clés : Nonlinear Dirac equation, nonrelativistic limit, uniformly accurate, multiscale time integrator, exponential wave integrator, spectral method, error bound
@article{M2AN_2018__52_2_543_0, author = {Cai, Yongyong and Wang, Yan}, title = {A uniformly accurate {(UA)} multiscale time integrator pseudospectral method for the nonlinear {Dirac} equation in the nonrelativistic limit regime}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {543--566}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2018015}, zbl = {1404.35377}, mrnumber = {3834435}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018015/} }
TY - JOUR AU - Cai, Yongyong AU - Wang, Yan TI - A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 543 EP - 566 VL - 52 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018015/ DO - 10.1051/m2an/2018015 LA - en ID - M2AN_2018__52_2_543_0 ER -
%0 Journal Article %A Cai, Yongyong %A Wang, Yan %T A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 543-566 %V 52 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018015/ %R 10.1051/m2an/2018015 %G en %F M2AN_2018__52_2_543_0
Cai, Yongyong; Wang, Yan. A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 543-566. doi : 10.1051/m2an/2018015. http://www.numdam.org/articles/10.1051/m2an/2018015/
[1] Linearized Crank–Nicholson scheme for nonlinear Dirac equations. J. Comput. Phys. 99 (1992) 348–350. | DOI | MR | Zbl
,[2] The numerical study of a nonlinear one-dimensional Dirac equation. Appl. Math. Comput. 13 (1983) 1–15. | DOI | MR | Zbl
, and ,[3] Absorbing boundary conditions for relativistic quantum mechanics equations. J. Comput. Phys. 277 (2014) 268–304. | DOI | MR | Zbl
, , , and ,[4] Existence of standing waves for Dirac fields with singular nonlinearities. Commun. Math. Phys. 133 (1990) 53–74. | DOI | MR | Zbl
, and ,[5] Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 52 (2014) 1103–1127. | DOI | MR | Zbl
and ,[6] An efficient and stable numerical method for the Maxwell–Dirac system. J. Comput. Phys. 199 (2004) 663–687. | DOI | MR | Zbl
and ,[7] A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the non-relativistic limit regime. SIAM J. Numer. Anal. 52 (2014) 2488–2511. | DOI | MR | Zbl
, and ,[8] A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the non-relativistic limit regime. SIAM J. Numer. Anal. 54 (2016) 1785–1812. | DOI | MR | Zbl
, , and ,[9] Error estimates of numerical methods for the nonlinear Dirac equation in the non-relativistic limit regime. Sci. China Math. 59 (2016) 1461–1494. | DOI | MR | Zbl
, , and ,[10] Numerical methods and comparison for the Dirac equation in the non-relativistic limit regime. J. Sci. Comput. 71 (2017) 1094–1134. | DOI | MR | Zbl
, , and ,[11] Solutions of nonlinear Dirac equations. J. Diff. Equ. 226 (2006) 210–249. | DOI | MR | Zbl
and ,[12] (Semi)-non-relativistic limits of the Dirac equation with external time-dependent electromagnetic field. Commun. Math. Phys. 197 (1998) 405–425. | DOI | MR | Zbl
, and ,[13] Theory and numerical approximations for a nonlinear 1 + 1 Dirac system. ESAIM: M2AN 46 (2012) 841–874. | DOI | Numdam | MR | Zbl
and ,[14] A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene. J. Comput. Phys. 257 (2014) 318–332. | DOI | MR | Zbl
, and ,[15] Y. Cai and Y. Wang, (Semi-)Nonrelativisitic limit of the nonlinear Dirac equations. In preparation.
[16] Chiral confinement: an exact solution of the massive Thirring model. Phys. Rev. D 11 (1975) 3572–3582. | DOI
, and ,[17] Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations. Numer. Math. 129 (2015) 211–250. | DOI | MR | Zbl
, , and ,[18] Dirac and Klein Gordon equations: convergence of solutions in the non-relativistic limit. Commun. Math. Phys. 79 (1981) 33–46. | DOI | MR | Zbl
and ,[19] An overview on linear and nonlinear Dirac equations. Discrete Contin. Dyn. Syst. 8 (2002) 381–397. | DOI | MR | Zbl
and ,[20] Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numer. Math. 126 (2014) 441–469. | DOI | MR | Zbl
and ,[21] Split-step spectral schemes for nonlinear Dirac systems. J. Comput. Phys. 83 (1989) 407–423. | DOI | MR | Zbl
and ,[22] Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3 (1961) 381–397. | DOI | MR | Zbl
,[23] The nonlinear Dirac equation in Bose–Einstein condensates: foundation and symmetries. Physics D 238 (2009) 1413–21. | DOI | MR | Zbl
and ,[24] Geometric Numerical Integration. Springer-Verlag (2002). | DOI | MR | Zbl
, and ,[25] Single-cone real-space finite difference scheme for the time-dependent Dirac equation. J. Comput. Phys. 265 (2014) 50–70. | DOI | MR | Zbl
, and ,[26] Exponential integrators. Acta Numer. 19 (2000) 209–286. | DOI | MR | Zbl
and ,[27] A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208 (2005) 761–789. | DOI | MR | Zbl
, , , and ,[28] Uniformly accurate numerical schemes for the nonlinear Dirac equation in the non-relativistic limit regime. Commun. Math. Sci. 15 (2017) 1107–1128. | DOI | MR | Zbl
, and ,[29] From nonlinear Klein–Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324 (2002) 359–389. | DOI | MR | Zbl
and ,[30] Soliton solutions for Dirac equations with homogeneous non-linearity in (1 + 1) dimensions. J. Phys. A: Math. Gen. 18 (1985) L1061–L1066. | DOI | MR
,[31] Chiral confinement in quasirelativistic Bose–Einstein condensates. Phys. Rev. Lett. 104 (2010) 073603. | DOI
, , , and ,[32] Existence of stationary states for nonlinear Dirac equations. J. Diff. Equ. 74 (1988) 50–68. | DOI | MR | Zbl
,[33] The non-relativistic limit of the nonlinear Dirac equation. Ann. Inst. Henri Poincaré 9 (1992) 3–12. | DOI | Numdam | MR | Zbl
,[34] Nonlinear spinor fields and its role in cosmology. Int. J. Theor. Phys. 51 (2012) 1812–1837. | DOI | MR | Zbl
,[35] On the non-relativistic limits of the Klein–Gordon and Dirac equations. J. Math. Anal. Appl. 71 (1979) 36–47. | DOI | MR | Zbl
,[36] Higher-order accurate Runge–Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Contin. Dyn. Syst. B 6 (2006) 623–640. | MR | Zbl
and ,[37] Spectral Methods: Algorithms, Analysis and Applications. Springer-Verlag, Berlin, Heidelberg (2011). | DOI | Zbl
, and ,[38] Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev. D 1 (1970) 2766–2769. | DOI
,[39] Localised solutions of a non-linear spinor field. J. Phys. A: Math. Gen. 10 (1977) 1361–1368. | DOI | MR
,[40] An efficient adaptive mesh redistribution method for a nonlinear Dirac equation. J. Comput.Phys. 222 (2007) 176–193. | DOI | MR | Zbl
and ,[41] Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10 (2012) 1301–1315. | DOI | MR | Zbl
, , and ,[42] Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 245 (2013) 131–149. | DOI | MR | Zbl
, and ,- On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation, BIT Numerical Mathematics, Volume 63 (2023) no. 2 | DOI:10.1007/s10543-023-00971-1
- Two energy-preserving Fourier pseudo-spectral methods and error estimate for the Klein–Gordon–Dirac system, Communications in Nonlinear Science and Numerical Simulation, Volume 118 (2023), p. 107064 | DOI:10.1016/j.cnsns.2022.107064
- A uniformly accurate method for the Klein-Gordon-Dirac system in the nonrelativistic regime, Journal of Computational Physics, Volume 486 (2023), p. 112105 | DOI:10.1016/j.jcp.2023.112105
- Operator-Compensation Schemes Combining with Implicit Integration Factor Method for the Nonlinear Dirac Equation, Journal of Physics: Conference Series, Volume 2468 (2023) no. 1, p. 012012 | DOI:10.1088/1742-6596/2468/1/012012
- Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, Volume 172 (2022), p. 1 | DOI:10.1016/j.apnum.2021.09.006
- A mass and energy conservative fourth-order compact difference scheme for the Klein-Gordon-Dirac equations
, Calcolo, Volume 59 (2022) no. 1 | DOI:10.1007/s10092-021-00452-3 - Uniformly Accurate Nested Picard Iterative Integrators for the Nonlinear Dirac Equation in the Nonrelativistic Regime, Multiscale Modeling Simulation, Volume 20 (2022) no. 1, p. 164 | DOI:10.1137/20m133573x
- Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime, Numerical Algorithms, Volume 89 (2022) no. 4, p. 1415 | DOI:10.1007/s11075-021-01159-w
- Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, Volume 162 (2021), p. 150 | DOI:10.1016/j.apnum.2020.12.010
- Splitting methods for nonlinear Dirac equations with Thirring type interaction in the nonrelativistic limit regime, Journal of Computational and Applied Mathematics, Volume 387 (2021), p. 112494 | DOI:10.1016/j.cam.2019.112494
- Uniform Error Bounds of Time-Splitting Methods for the Nonlinear Dirac Equation in the Nonrelativistic Regime without Magnetic Potential, SIAM Journal on Numerical Analysis, Volume 59 (2021) no. 2, p. 1040 | DOI:10.1137/19m1271828
- High-order conservative schemes for the nonlinear Dirac equation, International Journal of Computer Mathematics, Volume 97 (2020) no. 11, p. 2355 | DOI:10.1080/00207160.2019.1698735
- Study of instability of the Fourier split-step method for the massive Gross–Neveu model, Journal of Computational Physics, Volume 402 (2020), p. 109100 | DOI:10.1016/j.jcp.2019.109100
- Low-regularity integrators for nonlinear Dirac equations, Mathematics of Computation, Volume 90 (2020) no. 327, p. 189 | DOI:10.1090/mcom/3557
- Uniformly Accurate Nested Picard Iterative Integrators for the Dirac Equation in the Nonrelativistic Limit Regime, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 4, p. 1602 | DOI:10.1137/18m121931x
Cité par 15 documents. Sources : Crossref