We propose and analyze a reliable and efficient a posteriori error estimator for a control-constrained linear-quadratic optimal control problem involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. The proposed a posteriori error estimator is defined as the sum of two contributions, which are associated with the state and adjoint equations. The estimator associated with the state equation is based on Muckenhoupt weighted Sobolev spaces, while the one associated with the adjoint is in the maximum norm and allows for unbounded right hand sides. The analysis is valid for two and three-dimensional domains. On the basis of the devised a posteriori error estimator, we design a simple adaptive strategy that yields optimal rates of convergence for the numerical examples that we perform.
Accepté le :
DOI : 10.1051/m2an/2018010
Mots clés : Linear-quadratic optimal control problem, Dirac measures, a posteriori error analysis, adaptive finite elements, maximum norm, Muckenhoupt weights, weighted Sobolev spaces
@article{M2AN_2018__52_5_1617_0, author = {Allendes, Alejandro and Ot\'arola, Enrique and Rankin, Richard and Salgado, Abner J.}, title = {An a posteriori error analysis for an optimal control problem with point sources}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1617--1650}, publisher = {EDP-Sciences}, volume = {52}, number = {5}, year = {2018}, doi = {10.1051/m2an/2018010}, zbl = {1415.49002}, mrnumber = {3878607}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018010/} }
TY - JOUR AU - Allendes, Alejandro AU - Otárola, Enrique AU - Rankin, Richard AU - Salgado, Abner J. TI - An a posteriori error analysis for an optimal control problem with point sources JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1617 EP - 1650 VL - 52 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018010/ DO - 10.1051/m2an/2018010 LA - en ID - M2AN_2018__52_5_1617_0 ER -
%0 Journal Article %A Allendes, Alejandro %A Otárola, Enrique %A Rankin, Richard %A Salgado, Abner J. %T An a posteriori error analysis for an optimal control problem with point sources %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1617-1650 %V 52 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018010/ %R 10.1051/m2an/2018010 %G en %F M2AN_2018__52_5_1617_0
Allendes, Alejandro; Otárola, Enrique; Rankin, Richard; Salgado, Abner J. An a posteriori error analysis for an optimal control problem with point sources. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1617-1650. doi : 10.1051/m2an/2018010. http://www.numdam.org/articles/10.1051/m2an/2018010/
[1] A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. | DOI | MR | Zbl
, and ,[2] Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143 (2014) 119–137. | DOI | MR | Zbl
, , and ,[3] A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000). | MR | Zbl
and ,[4] Adaptive finite element methods for an optimal control problem involving Dirac measures. Numer. Math. 137 (2017) 159–197. | DOI | MR | Zbl
, , and ,[5] Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520. | DOI | Zbl
, and ,[6] A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. | DOI | MR | Zbl
, , and ,[7] Some applications of weighted norm inequalities to the analysis of optimal control problems. IMA J. Numer. Anal. 38 (2017) 852–883. | DOI | MR | Zbl
, and ,[8] A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49 (2011) 992–1005. | DOI | MR | Zbl
, , and ,[9] L2 and pointwise a posteriori error estimates for fem for elliptic PDEs on surfaces. IMA J. Numer. Anal. 35 (2015) 1199–1227. | DOI | MR | Zbl
and ,[10] L2 estimatesfor the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. | DOI | MR | Zbl
,[11] Maximum norm error estimators for three-dimensional elliptic problems. SIAM J. Numer. Anal. 37 (2000) 683–700. | DOI | MR | Zbl
, and ,[12] Neumann and mixed problems on curvilinear polyhedra. Integr. Equ. Oper. Theory 15 (1992) 227–261. | DOI | MR | Zbl
,[13] Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 50 (2012) 2159–2181. | DOI | MR | Zbl
and ,[14] Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems. Numer. Math. 133 (2016) 707–742. | DOI | MR | Zbl
and ,[15] Fourier Analysis. Vol. 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). | MR | Zbl
,[16] R. Durán and I. Ojea, A weighted setting for the Poisson problem with singular sources (in preparation).
[17] An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4 (1994) 313–329. | DOI | MR | Zbl
,[18] The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7 (1982) 77–116. | DOI | MR | Zbl
, and ,[19] Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl
and ,[20] Weighted Sobolev spaces and embedding theorems. Reprint of the 1998 edition. Trans. Am. Math. Soc. 361 (2009) 3829–3850. | DOI | MR | Zbl
and ,[21] Approximations of elliptic optimal control problems with controls acting on a lower dimensional manifold. SIAM J. Control Optim. 52 (2014) 2008–2035. | DOI | MR | Zbl
, and ,[22] Modern Fourier Analysis, 3rd edn. Vol. 250 of Graduate Texts in Mathematics. Springer, New York (2014). | MR | Zbl
,[23] Elliptic Problems in Nonsmooth Domains. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl
,[24] The Green function for uniformly elliptic equations. Manuscr. Math. 37 (1982) 303–342. | DOI | MR | Zbl
and ,[25] An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV 14 (2008) 540–560. | Numdam | MR | Zbl
, , and ,[26] The Green function estimates for strongly elliptic systems of second order. Manuscr. Math. 124 (2007) 139–172. | DOI | MR | Zbl
and ,[27] The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. (N.S.) 4 (1981) 203–207. | DOI | MR | Zbl
and ,[28] The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. | DOI | MR | Zbl
and ,[29] Partial Differential Equations, 3rd edn. Vol. 214 of Graduate Texts in Mathematics. Springer, New York (2013). | MR | Zbl
,[30] A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (2014) 1832–1861. | DOI | MR | Zbl
, and ,[31] Optimal a priori error estimates for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 52 (2014) 1753–1769. | DOI | MR | Zbl
and ,[32] Elliptic Boundary Value Problems in Domains With Point Singularities. American Mathematical Society, Providence, RI, USA (1997). | Zbl
, and ,[33] Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S.K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin (1971). | MR | Zbl
,[34] A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. | DOI | MR | Zbl
and ,[35] Elliptic Equations in Polyhedral Domains. Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl
and ,[36] On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36 (2011) 304–327. | DOI | MR | Zbl
and ,[37] Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488 (electronic). | DOI | MR | Zbl
, and ,[38] Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972) 207–226. | DOI | MR | Zbl
,[39] Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64 (1995) 1–22. | DOI | MR | Zbl
,[40] Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications. CIME Lectures. Springer (2011). | MR | Zbl
and ,[41] Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2002) 163–195. | DOI | MR | Zbl
, and ,[42] Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math. 104 (2006) 515–538. | DOI | MR | Zbl
, , and ,[43] Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009). | DOI | MR | Zbl
, and ,[44] Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. | DOI | MR | Zbl
, and ,[45] The Poisson and Stokes Problems in Nonconvex, Lipschitz Polytopes. Preprint (2017). | arXiv
and ,[46] Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176–201. | DOI | MR | Zbl
,[47] A posteriori error estimation for control-constrained, linear-quadratic optimal control problems. SIAM J. Numer. Anal. 54 (2016) 1169–1192. | DOI | MR | Zbl
and ,[48] Finite element convergence for singular data. Numer. Math. 21 (1973/74) 317–327. | DOI | MR | Zbl
,[49] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,[50] Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Translated from the 2005 German original by Jürgen Sprekels. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl
,[51] Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer (2000). | DOI | MR | Zbl
,[52] A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309–325. | DOI | MR | Zbl
,[53] A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl
,Cité par Sources :