We study a finite element approximation of the initial-boundary value problem of the 3D incompressible magnetohydrodynamic (MHD) system under smooth domains and data. We first establish several important regularities and a priori estimates for the velocity, pressure and magnetic field (u, p, B) of the MHD system under the assumption that ∇u ∈ L4(0,T;L2(Ω)3 × 3) and ∇ × B ∈ L4(0,T;L2(Ω)3). Then we formulate a finite element approximation of the MHD flow. Finally, we derive the optimal error estimates of the discrete velocity and magnetic field in energy-norm and the discrete pressure in L2-norm, and the optimal error estimates of the discrete velocity and magnetic field in L2-norm by means of a novel negative-norm technique, without the help of the standard duality argument for the Navier-Stokes equations.
Mots clés : MHD flow, finite element approximations, a priori estimates, error estimates, negative-norm technique
@article{M2AN_2018__52_1_181_0, author = {He, Yinnian and Zou, Jun}, title = {A priori estimates and optimal finite element approximation of the {MHD} flow in smooth domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {181--206}, publisher = {EDP-Sciences}, volume = {52}, number = {1}, year = {2018}, doi = {10.1051/m2an/2018006}, zbl = {1395.65143}, mrnumber = {3808158}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018006/} }
TY - JOUR AU - He, Yinnian AU - Zou, Jun TI - A priori estimates and optimal finite element approximation of the MHD flow in smooth domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 181 EP - 206 VL - 52 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018006/ DO - 10.1051/m2an/2018006 LA - en ID - M2AN_2018__52_1_181_0 ER -
%0 Journal Article %A He, Yinnian %A Zou, Jun %T A priori estimates and optimal finite element approximation of the MHD flow in smooth domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 181-206 %V 52 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018006/ %R 10.1051/m2an/2018006 %G en %F M2AN_2018__52_1_181_0
He, Yinnian; Zou, Jun. A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 181-206. doi : 10.1051/m2an/2018006. http://www.numdam.org/articles/10.1051/m2an/2018006/
[1] Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. | DOI | MR | Zbl
and ,[2] Survey lectures on the mathematical foundations of the finite element method with applications to partial differential equations, edited by . Academic Press, New York (1973). | MR
and ,[3] Convergent finite element discretizations of the multi-fluid nonstationary incompressible Magnetohydrodynamics equations. Math. Comput. 79 (2010) 1957–1999. | DOI | MR | Zbl
and ,[4] Some estimates for a weighted L2-projection. Math. Comp. 56 (1991) 463–476. | MR | Zbl
and ,[5] Si un problem al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova 31 (1961) 308–340. | Numdam | MR | Zbl
,[6] Finite Element Method for Elliptic Equations. North-Holland Publishing, Amsterdam (1978). | MR
,[7] A stabilized finite element method for the incompressible Magnetohydrodynamics equations. Numer. Math. 87 (2000) 83–111. | DOI | MR | Zbl
,[8] Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford Univerisity Press, Oxford (2006). | DOI | MR | Zbl
, and ,[9] Some boundary value problems for differenttial forms on compact Riemannian manifolds. Ann. Mat. Pura Appl. 4 (1979) 159–198. | DOI | MR | Zbl
,[10] Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg (1987). | MR | Zbl
and ,[11] On the existence and uniqueness and the finite element approxiamtion of solutions of the equations of stationary incompressible Magneto-hydrodynamics. Math. Comp. 56 (1991) 523–563. | DOI | MR | Zbl
, and ,[12] On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes Maxwell equations. J. Math. Fluid Mech. 6 (2004) 462–482. | DOI | MR | Zbl
, and ,[13] Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. | DOI | MR | Zbl
,[14] Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | DOI | MR | Zbl
and ,[15] Finite element approximation of the nonstationary Navier-Stokes problem III: Smooothing property and high order error estimates for spatial discretization. SIAM J. Numer. Anal. 25 (1988) 489–512. | DOI | MR | Zbl
and ,[16] The Electromagneto-Hydrodynamics of Fluids. Wiley, New York (1966).
and ,[17] Classical Electrodynamics. Wiley, New York (1975). | MR | Zbl
,[18] On existence and uniqueness of solutions of nonstationary problem for viscous incompressible fluid. Izv.Akad. Nauk SSSR Ser. Math. 21 (1957) 655–680. | MR | Zbl
and ,[19] Solution of Some Nonstationary Magnethydrodynamical Problems for Incompressible Fluid. Trusy Steklov Math. Inst. 69 (1960) 115–173. | MR
and ,[20] Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. | DOI | MR | Zbl
, , and ,[21] Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003). | DOI | MR | Zbl
,[22] A generalized alternating-direction implicit scheme for incompressible magnetohydrodynamic viscous flows at low magnetic Reynolds number. Appl. Math. Comput. 189 (2007) 1601–1613. | DOI | MR | Zbl
, , , and ,[23] Convergent finite element discretizations of the nonstationary incompressible Magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. | DOI | Numdam | MR | Zbl
,[24] A finite element method for magnetohydrodynamics. Comput. Methods. Appl. Mech. Eng. 190 (2001) 5867–5892. | DOI | MR | Zbl
, , ,[25] Mixed finite element methods for stationary incompressible Magneto-hydrodynamics. Numer. Math. 96 (2004) 771–800. | DOI | MR | Zbl
,[26] Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36 (1983) 635–664. | DOI | MR | Zbl
and ,[27] A Textbook of Magnetohydrodynamics. Pergmon Press, Oxford (1965). | MR
,[28] Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Spinger-Verlag, New York (1988). | DOI | MR | Zbl
,[29] Navier-Stokes Equations, Theory and Numerical, 3rd edn. North-Holland, Amsterdam (1983). | MR | Zbl
,[30] Induced trajectories and approxiamate inertial manifolds. ESAIM: M2AN 23 (1989) 541–561. | DOI | Numdam | MR | Zbl
,[31] Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. Int. J. Numer. Anal. Model. 10 (2013) 74–98. | MR | Zbl
, ,Cité par Sources :