Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 163-180.

We prove the well-posedness of entropy weak solutions for a class of scalar conservation laws with non-local flux arising in traffic modeling. We approximate the problem by a Lax-Friedrichs scheme and we provide L and BV estimates for the sequence of approximate solutions. Stability with respect to the initial data is obtained from the entropy condition through the doubling of variable technique. The limit model as the kernel support tends to infinity is also studied.

DOI : 10.1051/m2an/2017066
Classification : 35L65, 65M12
Mots clés : Non-local conservation laws, Lax-Friedrichs scheme
Chiarello, Felisia Angela 1 ; Goatin, Paola 1

1
@article{M2AN_2018__52_1_163_0,
     author = {Chiarello, Felisia Angela and Goatin, Paola},
     title = {Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {163--180},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/m2an/2017066},
     zbl = {1395.35142},
     mrnumber = {3808157},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017066/}
}
TY  - JOUR
AU  - Chiarello, Felisia Angela
AU  - Goatin, Paola
TI  - Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 163
EP  - 180
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017066/
DO  - 10.1051/m2an/2017066
LA  - en
ID  - M2AN_2018__52_1_163_0
ER  - 
%0 Journal Article
%A Chiarello, Felisia Angela
%A Goatin, Paola
%T Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 163-180
%V 52
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017066/
%R 10.1051/m2an/2017066
%G en
%F M2AN_2018__52_1_163_0
Chiarello, Felisia Angela; Goatin, Paola. Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 163-180. doi : 10.1051/m2an/2017066. http://www.numdam.org/articles/10.1051/m2an/2017066/

[1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. | DOI | MR | Zbl

[2] P. Amorim, R.M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. | DOI | Numdam | MR | Zbl

[3] F. Betancourt, R.Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885. | DOI | MR | Zbl

[4] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. | DOI | MR | Zbl

[5] M. Colombo, G. Crippa and L.V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Preprint (2017). | arXiv | MR

[6] R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Model. Methods Appl. Sci. 22 (2012) 1150023. | DOI | MR | Zbl

[7] R.M. Colombo and F. Marcellini, Nonlocal systems of balance laws in several space dimensions with applications to laser technology. J. Differ. Equ. 259 (2015) 6749–6773. | DOI | MR | Zbl

[8] R.M. Colombo and E. Rossi, Hyperbolic predators vs. parabolic prey. Commun. Math. Sci. 13 (2015) 369–400. | DOI | MR | Zbl

[9] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis. Vol. VII of Handb. Numer. Anal. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

[10] P. Goatin and S. Scialanga, The Lighthill-Whitham-Richards traffic flow model with non-local velocity: analytical study and numerical results. Research Report RR-8685. Inria Sophia Antipolis (2015).

[11] P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. | DOI | MR | Zbl

[12] S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts. Appl. Math. Model. 38 (2014) 3295–3313 | DOI

[13] A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263 (2017) 4023–4069. | DOI | MR | Zbl

[14] S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. | MR | Zbl

[15] A. Kurganov and A. Polizzi, Non-oscillatory central schemes for a traffic flow model with Arrehenius look-ahead dynamics. Netw. Heterog. Media 4 (2009) 431–451. | DOI | MR | Zbl

[16] D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Netw. Heterog. Media 6 (2011) 681–694. | DOI | MR | Zbl

[17] M.J. Lighthill and G.B. Whitham, On kinematic waves. II. a theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229 (1955) 317–345. | DOI | MR | Zbl

[18] P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. | DOI | MR | Zbl

[19] A. Sopasakis and M.A. Katsoulakis, Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J. Appl. Math. 66 (2006) 921–944. | DOI | MR | Zbl

[20] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions. Quart. Appl. Math. 57 (1999) 573–600. | DOI | MR | Zbl

Cité par Sources :