Total variation regularization of multi-material topology optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 275-303.

This work is concerned with the determination of the diffusion coefficient from distributed data of the state. This problem is related to homogenization theory on the one hand and to regularization theory on the other hand. An approach is proposed which involves total variation regularization combined with a suitably chosen cost functional that promotes the diffusion coefficient assuming prespecified values at each point of the domain. The main difficulty lies in the delicate functional-analytic structure of the resulting nondifferentiable optimization problem with pointwise constraints for functions of bounded variation, which makes the derivation of useful pointwise optimality conditions challenging. To cope with this difficulty, a novel reparametrization technique is introduced. Numerical examples using a regularized semismooth Newton method illustrate the structure of the obtained diffusion coefficient.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017061
Classification : 49Q10, 49K20, 49M15
Mots-clés : Topology optimization, total variation, convex analysis, non-smooth optimization, semi-smooth Newton method
Clason, Christian 1 ; Kruse, Florian 1 ; Kunisch, Karl 1

1
@article{M2AN_2018__52_1_275_0,
     author = {Clason, Christian and Kruse, Florian and Kunisch, Karl},
     title = {Total variation regularization of multi-material topology optimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {275--303},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {1},
     year = {2018},
     doi = {10.1051/m2an/2017061},
     zbl = {1397.49056},
     mrnumber = {3808161},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017061/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Kruse, Florian
AU  - Kunisch, Karl
TI  - Total variation regularization of multi-material topology optimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 275
EP  - 303
VL  - 52
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017061/
DO  - 10.1051/m2an/2017061
LA  - en
ID  - M2AN_2018__52_1_275_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Kruse, Florian
%A Kunisch, Karl
%T Total variation regularization of multi-material topology optimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 275-303
%V 52
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017061/
%R 10.1051/m2an/2017061
%G en
%F M2AN_2018__52_1_275_0
Clason, Christian; Kruse, Florian; Kunisch, Karl. Total variation regularization of multi-material topology optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 275-303. doi : 10.1051/m2an/2017061. http://www.numdam.org/articles/10.1051/m2an/2017061/

[1] U. Aßmann and A. Rösch, Identification of an unknown parameter function in the main part of an elliptic partial differential equation. Z. Anal. Anwend. 32 (2013) 163–178. | DOI | MR | Zbl

[2] M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 9–23.

[3] H.W. Alt, Linear Functional Analysis. An Application-Oriented Introduction (Universitext). Springer, London (2016). | MR | Zbl

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[5] S. Amstutz, A semismooth Newton method for topology optimization. Nonlinear Anal. 73 (2010) 1585–1595. | DOI | MR | Zbl

[6] S. Amstutz, Analysis of a level set method for topology optimization. Optim. Meth. Softw. 26 (2011) 555–573. | DOI | MR | Zbl

[7] S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. | DOI | MR | Zbl

[8] S. Amstutz and N. Van Goethem, Topology optimization methods with gradient-free perimeter approximation. Interfaces Free Bound. 14 (2012) 401–430. | DOI | MR | Zbl

[9] H. Attouch and H. Brezis, Duality for the sum of convex functions in general Banach spaces, in Aspects of Mathematics and Its Applications. Vol. 34 of North-Holland Math. Library. North-Holland, Amsterdam (1986) 125–133. | DOI | MR | Zbl

[10] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. Vol. 6 of MPS/SIAM Series on Optimization, 2nd revised edn. SIAM, Philadelphia, PA (2014). | MR | Zbl

[11] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces. Springer Monographs in Mathematics, 4th edn. Springer, Dordrecht (2012). | DOI | MR | Zbl

[12] S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50 (2012) 1162–1180. | DOI | MR | Zbl

[13] L. Blank, M.H. Farshbaf-Shaker, H. Garcke, C. Rupprecht and V. Styles, Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization, edited by G. Leugering et al. Vol. 165 of International Series of Numerical Mathematics. Birkhäuser, Cham (2014) 231–246. | DOI | MR | Zbl

[14] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: COCV. 9 (2003) 19–48. | Numdam | MR | Zbl

[15] K. Bredies and M. Holler, A pointwise characterization of the subdifferential of the total variation functional. Preprint (2016). | arXiv

[16] K. Brewster and M. Mitrea, Boundary value problems in weighted Sobolev spaces on Lipschitz manifolds. Mem. Differ. Eq. Math. Phys. 60 (2013) 15–55. | MR | Zbl

[17] E. Casas, K. Kunisch and C. Pola, Regularization by functions of bounded variation and applications to image enhancement. Appl. Math. Optim. 40 (1999) 229–257. | DOI | MR | Zbl

[18] E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122 (2012) 645–669. | DOI | MR | Zbl

[19] G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM: COCV. 2 (1997) 359–376. | Numdam | MR | Zbl

[20] C. Clason and K. Kunisch, Multi-bang control of elliptic systems. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 31 (2014) 1109–1130. | DOI | Numdam | MR | Zbl

[21] C. Clason and K. Kunisch, A convex analysis approach to multi-material topology optimization. ESAIM: M2AN 50 (2016) 1917–1936. | DOI | Numdam | MR | Zbl

[22] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Vol. 28 of Classics Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl

[23] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Vol. 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). | MR | Zbl

[24] K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. | DOI | MR | Zbl

[25] R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60 (2009) 397–428. | DOI | MR | Zbl

[26] J. Haslinger, M. Kočvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization. SIAM J. Appl. Math. 70 (2010) 2709–2728. | DOI | MR | Zbl

[27] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Vol. 15 of Advances in Design and Control. SIAM, Philadelphia, PA (2008). | MR | Zbl

[28] B. Kummer, Newton’s method for non-differentiable functions. Math. Res. 45 (1988) 114–125. | MR | Zbl

[29] A. Logg and G.N. Wells, Dolfin: automated finite element computing. ACM Trans. Math. Softw. 37 (2010) 20. | DOI | MR | Zbl

[30] A. Logg, K.-A. Mardal, G.N. Wells et al., Automated Solution of Differential Equations by the Finite Element Method. Springer, New York (2012). | DOI | Zbl

[31] A. Logg, G.N. Wells and J. Hake, DOLFIN: A C++/Python Finite Element Library, Chapter 10. Springer, Berlin Heidelberg (2012).

[32] R. Mifflin, Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15 (1977) 959–972. | DOI | MR | Zbl

[33] F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. 112 (1977) 49–68. | DOI | MR | Zbl

[34] F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 21–43. | MR | Zbl

[35] K. Pieper, Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems. Dissertation, Technische Universität München, München (2015).

[36] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. | DOI | MR | Zbl

[37] O. Scherzer, Explicit versus implicit relative error regularization on the space of functions of bounded variation, in Inverse Problems, Image Analysis, and Medical Imaging, edited by M.Z. Nashed and O. Scherzer, eds. Vol. 313 of Contemp. Math. American Mathematical Society, Providence, RI (2002) 171–198. | DOI | MR | Zbl

[38] W. Schirotzek, Nonsmooth Analysis (Universitext). Springer, Berlin (2007). | DOI | MR | Zbl

[39] L. Tartar, The appearance of oscillations in optimization problems, in Nonclassical Continuum Mechanics (Durham, 1986). Vol. 122 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (1987) 129–150. | MR | Zbl

[40] L. Tartar, The General Theory of Homogenization: A Personalized Introduction. Vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna (2009). | MR | Zbl

[41] C.P. Trautmann, Sparse measure-valued optimal control problems governed by wave equations. Dissertation, Karl-Franzens-Universität Graz, Graz (2015).

[42] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Translated from the German by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[43] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, Vol. 11 of MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2011). | MR | Zbl

[44] W.P. Ziemer, Weakly Differentiable Functions. Vol. 120 of Graduate Texts in Mathematics. Springer, New York (1989). | DOI | MR | Zbl

Cité par Sources :