Uniform in time error analysis of HDG approximation for Schrödinger equation based on HDG projection
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 751-772.

This paper presents error analysis of hybridizable discontinuous Galerkin (HDG) time-domain method for solving time dependent Schrödinger equations. The numerical trace and numerical flux are constructed to preserve the conservative property for the density of the particle described. We prove that there exist the superconvergence properties of the HDG method, which do hold for second-order elliptic problems, uniformly in time for the semidiscretization by the same method of Schrödinger equations provided that enough regularity is satisfied. Thus, if the approximations are piecewise polynomials of degree r, the approximations to the wave function and the flux converge with order r + 1. The suitably chosen projection of the wave function into a space of lower polynomial degree superconverges with order r + 2 for r ≥ 1 uniformly in time. The application of element-by-element postprocessing of the approximate solution which provides an approximation of the potential convergence with order r + 2 for r ≥ 1 in L2 is also uniformly in time.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017058
Classification : 65F10, 65N30, 65N55
Mots clés : HDG, error estimate, superconvergence, Schrödinger equations
Xiong, Chunguang 1 ; Luo, Fusheng 1 ; Ma, Xiuling 1

1
@article{M2AN_2018__52_2_751_0,
     author = {Xiong, Chunguang and Luo, Fusheng and Ma, Xiuling},
     title = {Uniform in time error analysis of {HDG} approximation for {Schr\"odinger} equation based on {HDG} projection},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {751--772},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017058},
     mrnumber = {3834442},
     zbl = {1416.65365},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017058/}
}
TY  - JOUR
AU  - Xiong, Chunguang
AU  - Luo, Fusheng
AU  - Ma, Xiuling
TI  - Uniform in time error analysis of HDG approximation for Schrödinger equation based on HDG projection
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 751
EP  - 772
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017058/
DO  - 10.1051/m2an/2017058
LA  - en
ID  - M2AN_2018__52_2_751_0
ER  - 
%0 Journal Article
%A Xiong, Chunguang
%A Luo, Fusheng
%A Ma, Xiuling
%T Uniform in time error analysis of HDG approximation for Schrödinger equation based on HDG projection
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 751-772
%V 52
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017058/
%R 10.1051/m2an/2017058
%G en
%F M2AN_2018__52_2_751_0
Xiong, Chunguang; Luo, Fusheng; Ma, Xiuling. Uniform in time error analysis of HDG approximation for Schrödinger equation based on HDG projection. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 751-772. doi : 10.1051/m2an/2017058. http://www.numdam.org/articles/10.1051/m2an/2017058/

[1] I. Alonso-Mallo and N. Reguera, A high order finite element discretization with local absorbing boundary conditions of the linear Schrödinger equation. J. Comput. Phys. 220 (2006) 409–421. | DOI | MR | Zbl

[2] X. Antoine, C. Besse and V. Mouysset, Numerical schemes for simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comput. 73 (2004) 1779–1799. | DOI | MR | Zbl

[3] A. Borzi and E. Decker, Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193 (2006) 65–88. | DOI | MR | Zbl

[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991) 90–132. | MR | Zbl

[5] B. Chabaud and B. Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81 (2012) 107–129. | DOI | MR | Zbl

[6] H. Chen, R. Ewing and R. Lazarov, Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data. Numer. Math. 78 (1998) 495–521. | DOI | MR | Zbl

[7] E.T. Chung, Q. Du and J. Zou, Convergence analysis of a finite volume method for Maxwell’s equations in nonhomogeneous media. SIAM J. Numer. Anal. 41 (2003) 37–63. | DOI | MR | Zbl

[8] B. Cockburn, B. Dong and J. Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (2008) 1887–1916. | DOI | MR | Zbl

[9] B. Cockburn, B. Dong and J. Guzman, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Scient. Comput. 40 (2009) 141–187. | DOI | MR | Zbl

[10] B. Cockburn, J. Guzman and H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78 (2009) 1–24. | DOI | MR | Zbl

[11] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl

[12] B. Cockburn, W. Qiu and M. Solano, A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83 (2014) 665–699. | DOI | MR | Zbl

[13] B. Dong, C. Shu and W. Wang, A new multiscale discontinuous Galerkin method for the one-dimensional stationary Schrödinger equation. J. Sci Comput. 66 (2016) 321–345. | DOI | MR | Zbl

[14] R. Ewing and R. Lazarov, Superconvergence of the mixed finite element approximations of parabolic problems using rectangular finite elements. East-West J. Numer. Math. 1 (1993) 199–212. | MR | Zbl

[15] K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions,J. Comput. Phys. 227 (2008) 2387–2410. | DOI | MR | Zbl

[16] G. Fu, W. Qiu and W. Zhang, An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: M2AN 49 (2015) 225–256. | DOI | Numdam | MR | Zbl

[17] L. Gastaldi and R.H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Model. Math. Anal. Numer. 23 (1989) 103–128. | DOI | Numdam | MR | Zbl

[18] J. Gopalakrishnan, B. Cockburn and F.J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | MR | Zbl

[19] H. Han, J. Jin and X. Wu, A finite difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain. Comput. Math. Appl., 50 (2005) 1345–1362. | DOI | MR | Zbl

[20] P. Harrison, Quantum Wells, Wires and Dots. John Wiley & Sons, New York (2000).

[21] M. Javidi and A. Golbabai, Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning. J. Math. Anal. Appl. 333 (2007) 1119–1127. | DOI | MR | Zbl

[22] J. Jin and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrödinger equation on unbounded domain. J. Comput. Appl. Math. 220 (2008) 240–256. | DOI | MR | Zbl

[23] H. Liao, Z. Sun and H. Shi, Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer. Anal. 47 (2010) 4381–4401. | DOI | MR | Zbl

[24] T. Lu, W. Cai and P. Zhang, Conservative local discontinuous Galerkin methods for time dependent Schrödinger equation. Int. J. Numer. Anal. Model. 2 (2014) 72–80. | MR | Zbl

[25] P. Lu, H. Chen and W. Qiu, An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86 (2017) 1553–1577. | DOI | MR | Zbl

[26] N.C. Nguyen, J. Peraire and B. Cockburn, Hybridizable discontinuous Galerkin methods, in Spectral and High Order Methods for Partial Differential Equations. Springer (2011) 63–84. | DOI | MR | Zbl

[27] W. Qiu and K. Shi, An HDG method for convection diffusion equation. J. Scient. Comput. 66 (2016) 346–357. | DOI | MR | Zbl

[28] W. Qiu and K. Shi, A superconvergent HDG methods for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36 (2016) 1–18. | MR

[29] L. Ramdas Ram-Mohan, Finite Element and Boundary Element Applications in Quantum Mechanics. Oxford University Press, Oxford (2002). | MR | Zbl

[30] P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Method. Vol. 606 of Lecture Notes in Math., edited by I. Galligani and E. Magenes. Springer-Verlag, New York (1977) 292–315. | DOI | MR | Zbl

[31] F.J. Says, From Raviart–Thomas to HDG: a personal voyage. Preprint (2013) | arXiv

[32] L. Schiff, Quantum Mechanics. McGraw-Hill, New York (1968).

[33] R. Stenberg, Postprocessing schemes for some mixed finite elements. RAIRO Model. Math. Anal. Numer. 25 (1991) 151–167. | DOI | Numdam | MR | Zbl

[34] J. Wang, A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60 (2014) 390–407. | DOI | MR | Zbl

Cité par Sources :