Cauchy–Born strain energy density for coupled incommensurate elastic chains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 729-749.

The recent fabrication of weakly interacting incommensurate two-dimensional layer stacks (A. Geim and I. Grigorieva, Nature 499 (2013) 419–425) requires an extension of the classical notion of the Cauchy–Born strain energy density since these atomistic systems are typically not periodic. In this paper, we rigorously formulate and analyze a Cauchy–Born strain energy density for weakly interacting incommensurate one-dimensional lattices (chains) as a large body limit and we give error estimates for its approximation by finite samples as well as the popular supercell method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017057
Classification : 65Z05, 70C20, 74E15, 70G75
Mots-clés : Two-dimensional materials, heterostructures, incommensurability, Cauchy–Born
@article{M2AN_2018__52_2_729_0,
     author = {Cazeaux, Paul and Luskin, Mitchell},
     title = {Cauchy{\textendash}Born strain energy density for coupled incommensurate elastic chains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {729--749},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2017057},
     zbl = {1416.74011},
     mrnumber = {3834441},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017057/}
}
TY  - JOUR
AU  - Cazeaux, Paul
AU  - Luskin, Mitchell
TI  - Cauchy–Born strain energy density for coupled incommensurate elastic chains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 729
EP  - 749
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017057/
DO  - 10.1051/m2an/2017057
LA  - en
ID  - M2AN_2018__52_2_729_0
ER  - 
%0 Journal Article
%A Cazeaux, Paul
%A Luskin, Mitchell
%T Cauchy–Born strain energy density for coupled incommensurate elastic chains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 729-749
%V 52
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017057/
%R 10.1051/m2an/2017057
%G en
%F M2AN_2018__52_2_729_0
Cazeaux, Paul; Luskin, Mitchell. Cauchy–Born strain energy density for coupled incommensurate elastic chains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 729-749. doi : 10.1051/m2an/2017057. http://www.numdam.org/articles/10.1051/m2an/2017057/

[1] M. Arroyo and T. Belytschko, An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50 (2002) 1941–1977. | DOI | MR | Zbl

[2] M. Arroyo and T. Belytschko, Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40 (2005) 455–469. | DOI | MR | Zbl

[3] M. Born,Dynamik der Kristallgitter, Vol. 4. Teubner, Berlin/Leipzig (1915). | JFM

[4] E. Cancès, P. Cazeaux and M. Luskin, Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. J. Math. Phys. 58 (2017) 063502. | DOI | MR | Zbl

[5] R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55 (1985) 2471–2474. | DOI

[6] A.H. Castro-Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81 (2009) 109–162. | DOI

[7] P. Cazeaux, M. Luskin and E. Tadmor, Analysis of rippling in incommensurate one-dimensional coupled chains. Multiscale Model. Simul. 15 (2017) 56–73. | DOI | MR | Zbl

[8] S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy–Born rule close to SO(n). J. Eur. Math. Soc. 8 (2006) 515–530. | DOI | MR | Zbl

[9] G. Dal Maso, An Introduction to Г-Convergence. Springer, Birkhäuser, Boston (1993). | DOI | MR | Zbl

[10] M. Dobson, There is no pointwise consistent quasicontinuum energy. IMA J. Numer. Anal. 34 (2014) 1541–1553. | DOI | MR | Zbl

[11] J.L. Ericksen, On the Cauchy–Born rule. Math. Mech. Solids 13 (2008) 199–220. | DOI | MR | Zbl

[12] G. Friesecke and F. Theil, Validity and failure of the Cauchy–Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445–478. | DOI | MR | Zbl

[13] A. Geim and I. Grigorieva, Van der Waals heterostructures. Nature 499 (2013) 419–425. | DOI

[14] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Vol. 49 of Publications Mathématiques de l’Institut des Hautes Études Scientifiques (1979) 5–233. | DOI | Numdam | MR | Zbl

[15] M. Herman, in Sur les courbes invariantes par les difféomorphismes de l’anneau, With an appendix by Albert Fathi. Vol. 1. Vol. 103 of Astérisque. Société Mathématique de France, Paris (1983). | Numdam | MR | Zbl

[16] H. Kesten, The discrepancy of random sequences {kx}. Acta Arith. 10 (1964) 183–213. | DOI | MR | Zbl

[17] A.N. Kolmogorov and V.H. Crespi, Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71 (2005) 235415. | DOI

[18] S. Kozlov, Averaging differential operators with almost periodic, rapidly oscillating coefficients. Math. USSR-Sbornik 35 (1979) 481–498. | DOI | MR | Zbl

[19] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. Wiley-Interscience, New York (1974). | MR | Zbl

[20] X.H. Li,C. Ortner, A. Shapeev and B.V. Koten, Analysis of blended atomistic/continuum hybrid methods. Preprint arXiv: (2014). | arXiv | MR

[21] M. Luskin and C. Ortner, Atomistic-to-continuum coupling. Acta Numer. 22 (2013) 397–508. | DOI | MR | Zbl

[22] I. Nikiforov and I. Tadmor, Continuum model for inextensible incommensurate 1-D bilayer with bending and disregistry manuscript (2015).

[23] M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. | DOI

[24] C. Ortner and F. Theil, Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207 (2013) 1025–1073. | DOI | MR | Zbl

[25] G. Papanicolaou and S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in Rigorous Results in Statistical Mechanics and Quantum Field Theory. Proceedings of Conference on Random Fields, Esztergom, Hungary, 1979, edited by J. Fritz, J.L. Lebaritz and D. Szasz. Seria Colloquia Mathematica Societatis Janos Bolyai, 27. North Holland (1981) 835–873. | MR | Zbl

[26] H.S. Park, P.A. Klein and G.J. Wagner, A surface Cauchy-Born model for nanoscale materials. Int. J. Numer. Meth. Eng. 68 (2006) 1072–1095. | DOI | MR | Zbl

[27] D. Sfyris, Phonon, Cauchy–Born and homogenized stability criteria for a free-standing monolayer graphene at the continuum level. Eur. J. Mech. A/Solids 55 (2016) 134–148. | DOI | MR | Zbl

[28] H. Terrones and M. Terrones, Bilayers of transition metal dichalcogenides: different stackings and heterostructures. J. Mater. Res. 29 (2014) 373–382. | DOI

[29] G.A. Tritsaris, S.N. Shirodkar, E. Kaxiras, P. Cazeaux, M. Luskin, P. Plecháč, et al., Perturbation theory for weakly coupled two-dimensional layers. J. Mater. Res. 31 (2016) 959–966. | DOI

[30] G. Zanzotto, The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Crystallogr. Sect. A 52 (1996) 839–849. | DOI

Cité par Sources :