We propose and analyze a one-dimensional multi-species cross-diffusion system with non-zero-flux boundary conditions on a moving domain, motivated by the modeling of a Physical Vapor Deposition process. Using the boundedness by entropy method introduced and developped in [5, 16], we prove the existence of a global weak solution to the obtained system. In addition, existence of a solution to an optimization problem defined on the fluxes is established under the assumption that the solution to the considered cross-diffusion system is unique. Lastly, we prove that in the case when the imposed external fluxes are constant and positive and the entropy density is defined as a classical logarithmic entropy, the concentrations of the different species converge in the long-time limit to constant profiles at a rate inversely proportional to time. These theoretical results are illustrated by numerical tests.
@article{M2AN_2018__52_4_1385_0, author = {Bakhta, Athmane and Ehrlacher, Virginie}, title = {Cross-diffusion systems with non-zero flux and moving boundary conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1385--1415}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017053}, mrnumber = {3875290}, zbl = {1408.65051}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2017053/} }
TY - JOUR AU - Bakhta, Athmane AU - Ehrlacher, Virginie TI - Cross-diffusion systems with non-zero flux and moving boundary conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1385 EP - 1415 VL - 52 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2017053/ DO - 10.1051/m2an/2017053 LA - en ID - M2AN_2018__52_4_1385_0 ER -
%0 Journal Article %A Bakhta, Athmane %A Ehrlacher, Virginie %T Cross-diffusion systems with non-zero flux and moving boundary conditions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1385-1415 %V 52 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2017053/ %R 10.1051/m2an/2017053 %G en %F M2AN_2018__52_4_1385_0
Bakhta, Athmane; Ehrlacher, Virginie. Cross-diffusion systems with non-zero flux and moving boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1385-1415. doi : 10.1051/m2an/2017053. https://www.numdam.org/articles/10.1051/m2an/2017053/
[1] Lp bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Equ. 4 (1979) 827–868. | DOI | MR | Zbl
,[2] Dynamic theory of quasilinear parabolic equations. ii. reaction-diffusion systems. Differ. Integral Eqs. 3 (1990) 13–75. | MR | Zbl
et al.,[3] Mathematical models and numerical simulation of photovoltaic devices. Ph.D. thesis, in preparation (2017).
,[4] A mathematical and numerical analysis of the maxwell-stefan diffusion equations. Discrete and Continuous Dynamical Systems-Series B 17 (2012) 1427–1440. | DOI | MR | Zbl
, and ,[5] Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010) 2842–2871. | DOI | MR | Zbl
, , and ,[6] Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322. | DOI | MR | Zbl
and ,[7] Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59. | DOI | MR | Zbl
and ,[8] Fully parabolic keller–segel model for chemotaxis with prevention of overcrowding. Nonlinearity 21 (2008) 2715. | DOI | MR | Zbl
and ,[9] A new class of transport distances between measures. Calcul. Variat. Partial Differ. Equ. 34 (2009) 193–231. | DOI | MR | Zbl
, and ,[10] Compact families of piecewise constant functions in lp (0, t; b). Nonl. Anal.: Theory, Methods Appl. 75 (2012) 3072–3077. | DOI | MR | Zbl
and ,[11] Local existence, uniqueness and smooth dependence for nonsmooth quasilinear parabolic problems. J. Evol. Equ. 10 (2010) 341–375. | DOI | MR | Zbl
and .[12] A user’s guide to pde models for chemotaxis. J. Math. Biology 58 (2009) 183–217. | DOI | MR | Zbl
and ,[13] Numer. Optimiz. Theoretical Practical Aspects volume 1. Springer Verlag Berlin Heidelberg (2006). | MR | Zbl
and , and ,[14] The variational formulation of the fokker–planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl
, and ,[15] Entropy structure of a cross-diffusion tumor-growth model. Math. Models Methods Appl. Sci. 22 (2012) 1250009. | DOI | MR | Zbl
and ,[16] The boundedness-by-entropy method for cross-diffusion systems. Nonl. 28 (2015) 1963. | MR | Zbl
,[17] Existence analysis of maxwell–stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45 (2013) 2421–2440. | DOI | MR | Zbl
and ,[18] Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model. Nonl. Differ. Equ. Appl. NoDEA 3 (1996) 421–444. | DOI | MR | Zbl
,[19] N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, translated from the russian by s. smith. translations of mathematical monographs, vol. 23. Amer. Math. Soc., Providence, RI 63 (1967) 64. | MR | Zbl
and ,[20] Everywhere regularity of solutions to a class of strongly coupled degenerate parabolic systems. Commun. Partial Differ. Equ. 31 (2006) 307–324. | DOI | MR | Zbl
and ,[21] Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44 (2012) 1674–1693. | DOI | MR | Zbl
, and ,[22] Gradient structures and geodesic convexity for reaction–diffusion systems. Phil. Trans. R. Soc. A 371 (2013) 20120346. | DOI | MR | Zbl
and ,[23] Non-homogeneous boundary value problems and applications, volume 1. Springer Science and Business Media (2012). | MR | Zbl
and ,[24] On Generalized Csiszár-Kullback Inequalities. Monatshefte für Math. 131 (2000) 235–253. | DOI | MR | Zbl
, , and ,[25] Handbook of physical vapor deposition (PVD) processing. William Andrew (2010).
,[26] Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis. Bulletin Math. Biology 71 (2009) 1117–1147. | DOI | MR | Zbl
,[27] Well-posedness of a parabolic moving-boundary problem in the setting of wasserstein gradient flows. Preprint arXiv: 0812.1269 (2008). | MR | Zbl
and ,[28] Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions. Archive for Rational Mech. Anal. 108 (1989) 281–291. | DOI | MR | Zbl
,[29] Some (new) counterexamples of parabolic systems. Commentationes Mathematicae Universitatis Carolinae 36 (1995) 503–510. | MR | Zbl
and ,[30] Analysis of degenerate cross-diffusion population models with volume filling. Ann. Institut Henri Poincaré (C) Non Linear Anal. 34 (2017) 1–29. | DOI | Numdam | MR | Zbl
and ,[31] Analysis of degenerate cross-diffusion population models with volume filling (Corrigendum). Ann. Institut Henri Poincaré (C) Non Linear Analysis. 34 (2017) 789–792. | DOI | Numdam | MR | Zbl
and ,[32] Transport distances and geodesic convexity for systems of degenerate diffusion equations. Calc. Variat. Part. Differ. Equ. 54 (2015) 3397–3438. | DOI | MR | Zbl
and ,- Structure-preserving reduced order model for parametric cross-diffusion systems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 3, p. 1201 | DOI:10.1051/m2an/2024026
- Existence analysis of a cross-diffusion system with nonlinear Robin boundary conditions for vesicle transport in neurites, Nonlinear Analysis, Volume 241 (2024), p. 113494 | DOI:10.1016/j.na.2024.113494
- Controllability Results for a Cross Diffusion System with a Free Boundary by a Flatness Approach, Acta Applicandae Mathematicae, Volume 187 (2023) no. 1 | DOI:10.1007/s10440-023-00607-0
- Structure Preserving Finite Volume Approximation of Cross-Diffusion Systems Coupled by a Free Interface, Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems, Volume 432 (2023), p. 205 | DOI:10.1007/978-3-031-40864-9_15
- A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 1, p. 560 | DOI:10.1093/imanum/drab101
- Boundary stabilization of one-dimensional cross-diffusion systems in a moving domain: Linearized system, Journal of Differential Equations, Volume 350 (2023), p. 251 | DOI:10.1016/j.jde.2022.12.021
- On multi-species diffusion with size exclusion, Nonlinear Analysis, Volume 224 (2022), p. 113092 | DOI:10.1016/j.na.2022.113092
- Weak-Strong Uniqueness for Maxwell–Stefan Systems, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 3, p. 3215 | DOI:10.1137/21m145210x
- Existence of weak solutions to a cross-diffusion Cahn-Hilliard type system, Journal of Differential Equations, Volume 286 (2021), p. 578 | DOI:10.1016/j.jde.2021.02.025
- Modeling and optimization of the fabrication process of thin-film solar cells by multi-source physical vapor deposition, Mathematics and Computers in Simulation, Volume 185 (2021), p. 115 | DOI:10.1016/j.matcom.2020.12.016
- Entropy Diminishing Finite Volume Approximation of a Cross-Diffusion System, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Volume 323 (2020), p. 183 | DOI:10.1007/978-3-030-43651-3_15
- A Convergent Entropy Diminishing Finite Volume Scheme for a Cross-Diffusion System, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 5, p. 2684 | DOI:10.1137/20m1316093
- A Numerical Schemefor the Probability Density of the First Hitting Time for Some Random Processes, Symmetry, Volume 12 (2020) no. 11, p. 1907 | DOI:10.3390/sym12111907
Cité par 13 documents. Sources : Crossref