We develop a rigorous error analysis for coarse-graining of defect-formation free energy. For a one-dimensional constrained atomistic system, we establish the thermodynamic limit of the defect-formation free energy and obtain explicitly the rate of convergence. We then construct a sequence of coarse-grained energies with the same rate but significantly reduced computational cost. We illustrate our analytical results through explicit computations for the case of harmonic potentials and through numerical simulations.
Accepté le :
DOI : 10.1051/m2an/2017052
Mots-clés : Defect formation free energy, finite temperature, material defects, Cauchy–Born rule
@article{M2AN_2018__52_4_1315_0, author = {Dobson, Matthew and Duong, Manh Hong and Ortner, Christoph}, title = {On assessing the accuracy of defect free energy computations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1315--1352}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017052}, mrnumber = {3875288}, zbl = {1455.74023}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017052/} }
TY - JOUR AU - Dobson, Matthew AU - Duong, Manh Hong AU - Ortner, Christoph TI - On assessing the accuracy of defect free energy computations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1315 EP - 1352 VL - 52 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017052/ DO - 10.1051/m2an/2017052 LA - en ID - M2AN_2018__52_4_1315_0 ER -
%0 Journal Article %A Dobson, Matthew %A Duong, Manh Hong %A Ortner, Christoph %T On assessing the accuracy of defect free energy computations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1315-1352 %V 52 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017052/ %R 10.1051/m2an/2017052 %G en %F M2AN_2018__52_4_1315_0
Dobson, Matthew; Duong, Manh Hong; Ortner, Christoph. On assessing the accuracy of defect free energy computations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1315-1352. doi : 10.1051/m2an/2017052. http://www.numdam.org/articles/10.1051/m2an/2017052/
[1] Finite-temperature coarse-graining of one-dimensional models: Mathematical analysis and computational approaches. J. Nonlin. Sci. 20 (2010) 241–275. | DOI | MR | Zbl
, , and ,[2] A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The membrane case. Comput. Mat. Sci. 66 (2013) 84–95. | DOI
and ,[3] Uniform Poincaré inequalities for unbounded conservative spin systems: the non-interacting case. Stochastic Process. Appl. 106 (2003) 223–244. | DOI | MR | Zbl
,[4] Materials Science and Engineering: An Introduction. Wiley (2010).
and .[5] Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. 3 (1975) 146–158.
,[6] On assessing the accuracy of defect free energy computations. To published in: ESAIM: M2AN DOI: (2018). | DOI | Numdam | MR | Zbl
and and ,[7] Conditional limit for exponential families and finite versions of de Finetti’s theorem. J. Theor. Probab. 1 (1988) 381–410. | DOI | MR | Zbl
and ,[8] Finite-temperature quasicontinuum: Molecular dynamics without all the atoms. Phys. Rev. Lett. 95 (2005) 060202.
, , and ,[9] Refinements of the Gibbs conditioning principle. Probability Theory and Related Fields 104 (1996) 1–14. | DOI | MR | Zbl
and ,[10] Large deviation techniques and applications. Springer, New York. (1998). | DOI | MR | Zbl
and .[11] A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 302–351. | DOI | Numdam | MR | Zbl
, , and ,[12] Dynamics of point defect formation, clustering and pit initiation on the pyrite surface. Electr. Acta 127 (2014) 416–426. | DOI
, , , and ,[13] Free Energy Computations. Imperial College Press (2012). | MR | Zbl
, and .[14] LSI for Kawasaki dynamics with weak interaction. Commun. Math. Phys. 307 (2011) 817–860. | DOI | MR | Zbl
,[15] Finite-temperature extension of the quasicontinuum method using langevin dynamics: entropy losses and analysis of errors. Modell. Simul. Mater. Sci. Eng. 18 (2010) 015003.
, , , , and ,[16] An Introduction to Mineral Sciences. Cambridge University Press. Cambridge Books Online (1992) | DOI
.[17] Fundamentals of defect ionization and transport. In Charged Semiconductor Defects, Engineering Materials and Processes. Springer London (2009). | DOI
and ,[18] Accuracy of computation of crystalline defects at finite temperature. Preprint arXiv:1409.5739 (2014).
and ,[19] Finite-Temperature Quasi-Continuum. ASME. Appl. Mech. Rev. 65 (2013) 010803–010803-27. | DOI
, , , and ,[20] Free energy of defect formation: Thermodynamics of anion frenkel pairs in indium oxide. Phys. Rev. B 83 (2011) 224105. | DOI
, and ,Cité par Sources :