On assessing the accuracy of defect free energy computations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1315-1352.

We develop a rigorous error analysis for coarse-graining of defect-formation free energy. For a one-dimensional constrained atomistic system, we establish the thermodynamic limit of the defect-formation free energy and obtain explicitly the rate of convergence. We then construct a sequence of coarse-grained energies with the same rate but significantly reduced computational cost. We illustrate our analytical results through explicit computations for the case of harmonic potentials and through numerical simulations.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017052
Classification : 65G99, 74E15, 74S60
Mots clés : Defect formation free energy, finite temperature, material defects, Cauchy–Born rule
Dobson, Matthew 1 ; Duong, Manh Hong 2 ; Ortner, Christoph 2

1 Department of Mathematics and Statistics, UMass Amherst, 710 N Pleasant Street, Amherst, MA 01003, USA
2 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
@article{M2AN_2018__52_4_1315_0,
     author = {Dobson, Matthew and Duong, Manh Hong and Ortner, Christoph},
     title = {On assessing the accuracy of defect free energy computations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1315--1352},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017052},
     mrnumber = {3875288},
     zbl = {1455.74023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017052/}
}
TY  - JOUR
AU  - Dobson, Matthew
AU  - Duong, Manh Hong
AU  - Ortner, Christoph
TI  - On assessing the accuracy of defect free energy computations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1315
EP  - 1352
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017052/
DO  - 10.1051/m2an/2017052
LA  - en
ID  - M2AN_2018__52_4_1315_0
ER  - 
%0 Journal Article
%A Dobson, Matthew
%A Duong, Manh Hong
%A Ortner, Christoph
%T On assessing the accuracy of defect free energy computations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1315-1352
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017052/
%R 10.1051/m2an/2017052
%G en
%F M2AN_2018__52_4_1315_0
Dobson, Matthew; Duong, Manh Hong; Ortner, Christoph. On assessing the accuracy of defect free energy computations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1315-1352. doi : 10.1051/m2an/2017052. http://www.numdam.org/articles/10.1051/m2an/2017052/

[1] X. Blanc, C.L. Bris, F. Legoll and C. Patz, Finite-temperature coarse-graining of one-dimensional models: Mathematical analysis and computational approaches. J. Nonlin. Sci. 20 (2010) 241–275. | DOI | MR | Zbl

[2] X. Blanc and F. Legoll, A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The membrane case. Comput. Mat. Sci. 66 (2013) 84–95. | DOI

[3] P. Caputo, Uniform Poincaré inequalities for unbounded conservative spin systems: the non-interacting case. Stochastic Process. Appl. 106 (2003) 223–244. | DOI | MR | Zbl

[4] W.D. Callister and D.G. Rethwisch. Materials Science and Engineering: An Introduction. Wiley (2010).

[5] I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. 3 (1975) 146–158.

[6] M. Dobson and M. H. Duong and C. Ortner, On assessing the accuracy of defect free energy computations. To published in: ESAIM: M2AN DOI: (2018). | DOI | Numdam | MR | Zbl

[7] P. Diaconis and D.A. Freedman, Conditional limit for exponential families and finite versions of de Finetti’s theorem. J. Theor. Probab. 1 (1988) 381–410. | DOI | MR | Zbl

[8] L.M. Dupuy, E.B. Tadmor, R.E. Miller and R. Phillips, Finite-temperature quasicontinuum: Molecular dynamics without all the atoms. Phys. Rev. Lett. 95 (2005) 060202.

[9] A. Dembo and O. Zeitouni, Refinements of the Gibbs conditioning principle. Probability Theory and Related Fields 104 (1996) 1–14. | DOI | MR | Zbl

[10] A. Dembo and O. Zeitouni. Large deviation techniques and applications. Springer, New York. (1998). | DOI | MR | Zbl

[11] N. Grunewald, F. Otto, C. Villani and M.G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 302–351. | DOI | Numdam | MR | Zbl

[12] F.W. Herbert, A. Krishnamoorthy, W. Ma, K.J. Van Vliet and B. Yildiz, Dynamics of point defect formation, clustering and pit initiation on the pyrite surface. Electr. Acta 127 (2014) 416–426. | DOI

[13] T Lelièvre, M Rousset and G Stoltz. Free Energy Computations. Imperial College Press (2012). | MR | Zbl

[14] G. Menz, LSI for Kawasaki dynamics with weak interaction. Commun. Math. Phys. 307 (2011) 817–860. | DOI | MR | Zbl

[15] J. Marian, G. Venturini, B.L. Hansen, J. Knap, M. Ortiz and G.H. Campbell, Finite-temperature extension of the quasicontinuum method using langevin dynamics: entropy losses and analysis of errors. Modell. Simul. Mater. Sci. Eng. 18 (2010) 015003.

[16] A. Putnis. An Introduction to Mineral Sciences. Cambridge University Press. Cambridge Books Online (1992) | DOI

[17] E.G. Seebauer and M.C. Kratzer, Fundamentals of defect ionization and transport. In Charged Semiconductor Defects, Engineering Materials and Processes. Springer London (2009). | DOI

[18] A.V. Shapeev and M. Luskin, Accuracy of computation of crystalline defects at finite temperature. Preprint arXiv:1409.5739 (2014).

[19] E.B. Tadmor, F.F. Legoll, W.K. Kim, L.M. Dupuy and R.E. Miller, Finite-Temperature Quasi-Continuum. ASME. Appl. Mech. Rev. 65 (2013) 010803–010803-27. | DOI

[20] A. Walsh, A.A. Sokol and C.R.A. Catlow, Free energy of defect formation: Thermodynamics of anion frenkel pairs in indium oxide. Phys. Rev. B 83 (2011) 224105. | DOI

Cité par Sources :