In this work we consider the problem of modelling of 2D anisotropic dispersive wave propagation in unbounded domains with the help of perfectly matched layers (PMLs). We study the Maxwell equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and magnetic permeability. An application of the traditional PMLs to this kind of problems often results in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of non-dissipative materials, we show that a known necessary stability condition of the perfectly matched layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.
Accepté le :
DOI : 10.1051/m2an/2017019
Mots-clés : Perfectly matched layers, stability, Maxwell equations, passive metamaterials, Laplace transform
@article{M2AN_2017__51_6_2399_0, author = {B\'ecache, Eliane and Kachanovska, Maryna}, title = {Stable perfectly matched layers for a class of anisotropic dispersive models. {Part} {I:} necessary and sufficient conditions of stability}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2399--2434}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017019}, mrnumber = {3745176}, zbl = {1454.78010}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017019/} }
TY - JOUR AU - Bécache, Eliane AU - Kachanovska, Maryna TI - Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2399 EP - 2434 VL - 51 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017019/ DO - 10.1051/m2an/2017019 LA - en ID - M2AN_2017__51_6_2399_0 ER -
%0 Journal Article %A Bécache, Eliane %A Kachanovska, Maryna %T Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2399-2434 %V 51 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017019/ %R 10.1051/m2an/2017019 %G en %F M2AN_2017__51_6_2399_0
Bécache, Eliane; Kachanovska, Maryna. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2399-2434. doi : 10.1051/m2an/2017019. http://www.numdam.org/articles/10.1051/m2an/2017019/
Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67 (2006) 1–23. | DOI | MR | Zbl
, and ,Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comput. Phys. 230 (2011) 5877–5907. | DOI | MR | Zbl
, , and ,Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129 (2015) 611–646. | DOI | MR | Zbl
, and ,A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl
,Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. J. Math. Phys. 10 (1931) 191–236. | DOI | Zbl
,Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127 (1996) 363–379. | DOI | MR | Zbl
,Perfectly matched layers in negative index metamaterials and plasmas, in: CANUM 2014–42e Congrès National d’Analyse Numérique. ESAIM: PROCs 50 (2015) 133–143. | MR
, , and ,Stable perfectly matched layers for a cold plasma in a strong background magnetic field. J. Comput. Phys. 341 (2017) 76–101. | DOI | MR | Zbl
, and ,E. Bécache, P. Joly and V. Vinoles, To appear in Math. Comput. (2017). | HAL
Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188 (2003) 399–433. | DOI | MR | Zbl
, and ,E. Bécache and M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models. Part I. Necessary and Sufficient Conditions of Stability (Extended Version). (2017). | HAL | MR
Perfectly Matched Layer (PML) for Computational Electromagnetics. Synthesis Lect. Comput. Electromag. 2 (2007) 1–117. | DOI
,Double absorbing boundary formulations for acoustics and elastodynamics. SIAM J. Sci. Comput. 36 (2014) A1277–A1312. | DOI | MR | Zbl
, and ,On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. ESAIM: M2AN 36 (2002) 87–119. | DOI | Numdam | MR | Zbl
and ,A PML utilizing k-vector information as applied to the whistler mode in a magnetized plasma, Antennas and Propagation. IEEE Trans. 54 (2006) 2424–2429. | DOI
, and ,Perfectly matched layer behavior in negative refractive index materials. IEEE Ant. Wireless Propag. Lett. 3 (2004) 172–175. | DOI
,Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6 (2009) 124–146. | MR | Zbl
,Mathematical models for dispersive electromagnetic waves: an overview. Comput. Math. Appl. 74 (2017) 2792–2830. | DOI | MR | Zbl
, and ,A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Tech. Lett. 7 (1994) 599–604. | DOI
and ,C. Carathéodory, Conformal Representation. Cambridge University Press (1969). | JFM | MR | Zbl
F. Collino, High order absorbing boundary conditions for wave propagation models: straight line boundary and corner cases, in: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE (1993). SIAM, Philadelphia, PA (1993) 161–171. | MR | Zbl
Some properties of layer potentials and boundary integral operators for the wave equation. J. Integral Equ. Appl. 25 (2013) 253–294. | DOI | MR | Zbl
and ,A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3820–3853. | DOI | MR | Zbl
and ,Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains. Inter. J. Numer. Methods Engrg. 96 (2013) 689–711. | DOI | MR | Zbl
and ,N. Dunford, J.T. Schwartz and Linear operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. Wiley Classics Library, John Wiley and Sons, Inc., New York (1988). | MR | Zbl
R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Evolution problems. I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig. Vol. 5. Springer-Verlag, Berlin (1992). | MR | Zbl
Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. | DOI | MR | Zbl
and ,J. Jacquot, Description non linéaire auto-cohérente de la propagation d’ondes radiofréquences et de la périphérie d’un plasma magnétisé. Ph.D. thesis, Université de Lorraine (2013).
2d and 3d modeling of wave propagation in cold magnetized plasma near the tore supra icrh antenna relying on the perfecly matched layer technique. Plasma Phys. Controll. Fusion 55 (2013) 115004. | DOI
, , , , , , and ,An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. | DOI | MR | Zbl
,A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. New computational methods for wave propagation. Wave Motion 39 (2004) 327–338. | DOI | MR | Zbl
and ,Solving time-harmonic scattering problems based on the pole condition. I. Theory, SIAM J. Math. Anal. 35 (2003) 183–210. | DOI | MR | Zbl
, and ,L. Halpern and J. Rauch, Bérenger/Maxwell with discontinous absorptions: existence, perfection, and no loss, in: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2014) Exp. No. X, 20. | MR
The analysis of matched layers. Confluentes Math. 3 (2011) 159–236. | DOI | MR | Zbl
, and ,Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials. Numer. Methods Partial Differ. Equ. 30 (2014) 1558–1574. | DOI | MR | Zbl
, and ,A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173 (2001) 455–480. | DOI | MR | Zbl
,High-order non-reflecting boundary scheme for time-dependent waves. J. Comput. Phys. 186 (2003) 24–46. | DOI | MR | Zbl
and ,Sum rules and physical bounds on passive metamaterials. New J. Phys. 12 (2010) 043046. | DOI | Zbl
and ,H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, Inc. (1989). | MR | Zbl
M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models. Part II: Energy Estimates. Submitted to (2017). | HAL
B.J. Levin, Distribution of zeros of entire functions, revised Edition. Translated from the Russian by R.P. Boas, J.M. Danskin, F.M. Goodspeed, J. Korevaar, A.L. Shields and H.P. Thielman. Vol. 5 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1980). | MR | Zbl
L. D. Landau, L. P. Pitaevskii and E.M. Lifshitz, Electrodynamics of continuous media, Vol. 8. Elsevier (1984).
On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math. 67 (1994) 365–389. | DOI | MR | Zbl
,Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112 (2009) 637–678. | DOI | MR | Zbl
and ,Convolution quadrature revisited. BIT 44 (2004) 503–514. | DOI | MR | Zbl
,A special class of functions with positive real part in a half-plane. Duke Math. J. 14 (1947) 777–786. | DOI | MR | Zbl
,Transparent boundary conditions based on the pole condition for time-dependent, two-dimensional problems. Numer. Methods Partial Differ. Equ. 29 (2013) 1367–1390. | DOI | MR | Zbl
, and ,F.-J. Sayas, Retarded potentials and time domain boundary integral equations. A road map. Vol. 50 of Springer Series in Computational Mathematics. Springer, Cham (2016). | MR
F.-J. Sayas, Retarded potentials and time domain boundary integral equations: a road-map, Lecture Notes. Available at http://www.math.udel.edu/˜fjsayas/documents/TDBIEclassnotes2012.pdf. | MR
The Electrodynamics of Substances with Simultaneously Negative Values of and . Soviet Phys. Uspekhi 10 (1968) 509–514. | DOI
,Speed-of-light limitations in passive linear media. Phys. Rev. A 90 (2014) 023847. | DOI
, and ,Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. | DOI | Zbl
,GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theory Tech. 44 (1996) 2555–2563. | DOI
and ,Cité par Sources :