Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2399-2434.

In this work we consider the problem of modelling of 2D anisotropic dispersive wave propagation in unbounded domains with the help of perfectly matched layers (PMLs). We study the Maxwell equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and magnetic permeability. An application of the traditional PMLs to this kind of problems often results in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of non-dissipative materials, we show that a known necessary stability condition of the perfectly matched layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017019
Classification : 65M12, 35Q60
Mots-clés : Perfectly matched layers, stability, Maxwell equations, passive metamaterials, Laplace transform
Bécache, Eliane 1 ; Kachanovska, Maryna 1

1 Laboratoire Poems (UMR 7231 CNRS/Inria/ENSTA ParisTech, Université Paris Saclay), ENSTA ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France.
@article{M2AN_2017__51_6_2399_0,
     author = {B\'ecache, Eliane and Kachanovska, Maryna},
     title = {Stable perfectly matched layers for a class of anisotropic dispersive models. {Part} {I:} necessary and sufficient conditions of stability},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2399--2434},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017019},
     mrnumber = {3745176},
     zbl = {1454.78010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017019/}
}
TY  - JOUR
AU  - Bécache, Eliane
AU  - Kachanovska, Maryna
TI  - Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2399
EP  - 2434
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017019/
DO  - 10.1051/m2an/2017019
LA  - en
ID  - M2AN_2017__51_6_2399_0
ER  - 
%0 Journal Article
%A Bécache, Eliane
%A Kachanovska, Maryna
%T Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2399-2434
%V 51
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017019/
%R 10.1051/m2an/2017019
%G en
%F M2AN_2017__51_6_2399_0
Bécache, Eliane; Kachanovska, Maryna. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2399-2434. doi : 10.1051/m2an/2017019. http://www.numdam.org/articles/10.1051/m2an/2017019/

D. Appelö, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67 (2006) 1–23. | DOI | MR | Zbl

T. Abboud, P. Joly, J. Rodríguez and I. Terrasse, Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comput. Phys. 230 (2011) 5877–5907. | DOI | MR | Zbl

L. Banjai, C. Lubich and F.-J. Sayas, Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129 (2015) 611–646. | DOI | MR | Zbl

J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl

O. Brune, Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. J. Math. Phys. 10 (1931) 191–236. | DOI | Zbl

J.-P. Bérenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127 (1996) 363–379. | DOI | MR | Zbl

É. Bécache, P. Joly, M. Kachanovska and V. Vinoles, Perfectly matched layers in negative index metamaterials and plasmas, in: CANUM 2014–42e Congrès National d’Analyse Numérique. ESAIM: PROCs 50 (2015) 133–143. | MR

E. Bécache, P. Joly and M. Kachanovska, Stable perfectly matched layers for a cold plasma in a strong background magnetic field. J. Comput. Phys. 341 (2017) 76–101. | DOI | MR | Zbl

E. Bécache, P. Joly and V. Vinoles, To appear in Math. Comput. (2017). | HAL

E. Bécache, S. Fauqueux and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188 (2003) 399–433. | DOI | MR | Zbl

E. Bécache and M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models. Part I. Necessary and Sufficient Conditions of Stability (Extended Version). (2017). | HAL | MR

J.-P. Bérenger, Perfectly Matched Layer (PML) for Computational Electromagnetics. Synthesis Lect. Comput. Electromag. 2 (2007) 1–117. | DOI

D. Baffet, T. Hagstrom and D. Givoli, Double absorbing boundary formulations for acoustics and elastodynamics. SIAM J. Sci. Comput. 36 (2014) A1277–A1312. | DOI | MR | Zbl

E. Bécache and P. Joly, On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. ESAIM: M2AN 36 (2002) 87–119. | DOI | Numdam | MR | Zbl

M. Chevalier, T. Chevalier and U. Inan, A PML utilizing k-vector information as applied to the whistler mode in a magnetized plasma, Antennas and Propagation. IEEE Trans. 54 (2006) 2424–2429. | DOI

S.A. Cummer, Perfectly matched layer behavior in negative refractive index materials. IEEE Ant. Wireless Propag. Lett. 3 (2004) 172–175. | DOI

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6 (2009) 124–146. | MR | Zbl

M. Cassier, P. Joly and M. Kachanovska, Mathematical models for dispersive electromagnetic waves: an overview. Comput. Math. Appl. 74 (2017) 2792–2830. | DOI | MR | Zbl

W.C. Chew and W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Tech. Lett. 7 (1994) 599–604. | DOI

C. Carathéodory, Conformal Representation. Cambridge University Press (1969). | JFM | MR | Zbl

F. Collino, High order absorbing boundary conditions for wave propagation models: straight line boundary and corner cases, in: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE (1993). SIAM, Philadelphia, PA (1993) 161–171. | MR | Zbl

V. Domínguez and F.-J. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation. J. Integral Equ. Appl. 25 (2013) 253–294. | DOI | MR | Zbl

J. Diaz and P. Joly, A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3820–3853. | DOI | MR | Zbl

E. Demaldent and S. Imperiale, Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains. Inter. J. Numer. Methods Engrg. 96 (2013) 689–711. | DOI | MR | Zbl

N. Dunford, J.T. Schwartz and Linear operators. Part I, General theory. With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. Wiley Classics Library, John Wiley and Sons, Inc., New York (1988). | MR | Zbl

R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Evolution problems. I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig. Vol. 5. Springer-Verlag, Berlin (1992). | MR | Zbl

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. | DOI | MR | Zbl

J. Jacquot, Description non linéaire auto-cohérente de la propagation d’ondes radiofréquences et de la périphérie d’un plasma magnétisé. Ph.D. thesis, Université de Lorraine (2013).

J. Jacquot, L. Colas, F. Clairet, M. Goniche, S. Heuraux, J. Hillairet, G. Lombard and D. Milanesio, 2d and 3d modeling of wave propagation in cold magnetized plasma near the tore supra icrh antenna relying on the perfecly matched layer technique. Plasma Phys. Controll. Fusion 55 (2013) 115004. | DOI

P. Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. | DOI | MR | Zbl

T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. New computational methods for wave propagation. Wave Motion 39 (2004) 327–338. | DOI | MR | Zbl

T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. I. Theory, SIAM J. Math. Anal. 35 (2003) 183–210. | DOI | MR | Zbl

L. Halpern and J. Rauch, Bérenger/Maxwell with discontinous absorptions: existence, perfection, and no loss, in: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2014) Exp. No. X, 20. | MR

L. Halpern, S. Petit-Bergez and J. Rauch, The analysis of matched layers. Confluentes Math. 3 (2011) 159–236. | DOI | MR | Zbl

Y. Huang, J. Li and W. Yang, Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials. Numer. Methods Partial Differ. Equ. 30 (2014) 1558–1574. | DOI | MR | Zbl

F.Q. Hu, A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173 (2001) 455–480. | DOI | MR | Zbl

D. Givoli and B. Neta, High-order non-reflecting boundary scheme for time-dependent waves. J. Comput. Phys. 186 (2003) 24–46. | DOI | MR | Zbl

M. Gustafsson and D. Sjöberg, Sum rules and physical bounds on passive metamaterials. New J. Phys. 12 (2010) 043046. | DOI | Zbl

H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, Inc. (1989). | MR | Zbl

M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models. Part II: Energy Estimates. Submitted to (2017). | HAL

B.J. Levin, Distribution of zeros of entire functions, revised Edition. Translated from the Russian by R.P. Boas, J.M. Danskin, F.M. Goodspeed, J. Korevaar, A.L. Shields and H.P. Thielman. Vol. 5 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1980). | MR | Zbl

L. D. Landau, L. P. Pitaevskii and E.M. Lifshitz, Electrodynamics of continuous media, Vol. 8. Elsevier (1984).

C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math. 67 (1994) 365–389. | DOI | MR | Zbl

A.R. Laliena and F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112 (2009) 637–678. | DOI | MR | Zbl

C. Lubich, Convolution quadrature revisited. BIT 44 (2004) 503–514. | DOI | MR | Zbl

P.I. Richards, A special class of functions with positive real part in a half-plane. Duke Math. J. 14 (1947) 777–786. | DOI | MR | Zbl

D. Ruprecht, A. Schädle and F. Schmidt, Transparent boundary conditions based on the pole condition for time-dependent, two-dimensional problems. Numer. Methods Partial Differ. Equ. 29 (2013) 1367–1390. | DOI | MR | Zbl

F.-J. Sayas, Retarded potentials and time domain boundary integral equations. A road map. Vol. 50 of Springer Series in Computational Mathematics. Springer, Cham (2016). | MR

F.-J. Sayas, Retarded potentials and time domain boundary integral equations: a road-map, Lecture Notes. Available at http://www.math.udel.edu/˜fjsayas/documents/TDBIEclassnotes2012.pdf. | MR

V.G. Veselago, The Electrodynamics of Substances with Simultaneously Negative Values of ϵ and μ. Soviet Phys. Uspekhi 10 (1968) 509–514. | DOI

A. Welters, Y. Avniel and S.G. Johnson, Speed-of-light limitations in passive linear media. Phys. Rev. A 90 (2014) 023847. | DOI

K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. | DOI | Zbl

L. Zhao and A.C. Cangellaris, GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theory Tech. 44 (1996) 2555–2563. | DOI

Cité par Sources :